MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdenle Unicode version

Theorem divdenle 13028
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divdenle  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )

Proof of Theorem divdenle
StepHypRef Expression
1 divnumden 13027 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
21simprd 449 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  =  ( B  /  ( A  gcd  B ) ) )
3 simpl 443 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
4 nnz 10196 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
54adantl 452 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
6 nnne0 9925 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
76neneqd 2545 . . . . . . . 8  |-  ( B  e.  NN  ->  -.  B  =  0 )
87adantl 452 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
98intnand 882 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
10 gcdn0cl 12901 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
113, 5, 9, 10syl21anc 1182 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1211nnge1d 9935 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  <_  ( A  gcd  B ) )
13 1re 8984 . . . . . 6  |-  1  e.  RR
1413a1i 10 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  e.  RR )
15 0lt1 9443 . . . . . 6  |-  0  <  1
1615a1i 10 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  1 )
1711nnred 9908 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  RR )
1811nngt0d 9936 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  ( A  gcd  B ) )
19 nnre 9900 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  RR )
2019adantl 452 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  RR )
21 nngt0 9922 . . . . . 6  |-  ( B  e.  NN  ->  0  <  B )
2221adantl 452 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  B )
23 lediv2 9793 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( A  gcd  B )  e.  RR  /\  0  < 
( A  gcd  B
) )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2414, 16, 17, 18, 20, 22, 23syl222anc 1199 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2512, 24mpbid 201 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  ( B  / 
1 ) )
26 nncn 9901 . . . . 5  |-  ( B  e.  NN  ->  B  e.  CC )
2726adantl 452 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
2827div1d 9675 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  1
)  =  B )
2925, 28breqtrd 4149 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  B )
302, 29eqbrtrd 4145 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   CCcc 8882   RRcr 8883   0cc0 8884   1c1 8885    < clt 9014    <_ cle 9015    / cdiv 9570   NNcn 9893   ZZcz 10175    gcd cgcd 12893  numercnumer 13012  denomcdenom 13013
This theorem is referenced by:  qden1elz  13036  irrapxlem5  26502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-q 10468  df-rp 10506  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-dvds 12740  df-gcd 12894  df-numer 13014  df-denom 13015
  Copyright terms: Public domain W3C validator