MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv2 Unicode version

Theorem divdiv2 9660
Description: Division by a fraction. (Contributed by NM, 27-Dec-2008.)
Assertion
Ref Expression
divdiv2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A  /  ( B  /  C ) )  =  ( ( A  x.  C )  /  B ) )

Proof of Theorem divdiv2
StepHypRef Expression
1 ax-1cn 8983 . . . . 5  |-  1  e.  CC
2 ax-1ne0 8994 . . . . 5  |-  1  =/=  0
31, 2pm3.2i 442 . . . 4  |-  ( 1  e.  CC  /\  1  =/=  0 )
4 divdivdiv 9649 . . . 4  |-  ( ( ( A  e.  CC  /\  ( 1  e.  CC  /\  1  =/=  0 ) )  /\  ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  (
( A  /  1
)  /  ( B  /  C ) )  =  ( ( A  x.  C )  / 
( 1  x.  B
) ) )
53, 4mpanl2 663 . . 3  |-  ( ( A  e.  CC  /\  ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  ( ( A  /  1 )  / 
( B  /  C
) )  =  ( ( A  x.  C
)  /  ( 1  x.  B ) ) )
653impb 1149 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  / 
1 )  /  ( B  /  C ) )  =  ( ( A  x.  C )  / 
( 1  x.  B
) ) )
7 div1 9641 . . . 4  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
873ad2ant1 978 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A  /  1
)  =  A )
98oveq1d 6037 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  / 
1 )  /  ( B  /  C ) )  =  ( A  / 
( B  /  C
) ) )
10 mulid2 9024 . . . . 5  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
1110ad2antrl 709 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( 1  x.  B )  =  B )
12113adant3 977 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( 1  x.  B
)  =  B )
1312oveq2d 6038 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  x.  C )  /  (
1  x.  B ) )  =  ( ( A  x.  C )  /  B ) )
146, 9, 133eqtr3d 2429 1  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A  /  ( B  /  C ) )  =  ( ( A  x.  C )  /  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552  (class class class)co 6022   CCcc 8923   0cc0 8925   1c1 8926    x. cmul 8930    / cdiv 9611
This theorem is referenced by:  divdiv2d  9756  aaliou3lem3  20130  chebbnd2  21040  dchrmusum2  21057  dchrvmasumlem2  21061  mulog2sumlem2  21098  pntibndlem3  21155  pntlemb  21160  pntlemn  21163  pntlemj  21166  pntlemf  21168  ofdivdiv2  27216  expgrowth  27223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-riota 6487  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612
  Copyright terms: Public domain W3C validator