MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivdiv Structured version   Unicode version

Theorem divdivdiv 9720
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divdivdiv  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )

Proof of Theorem divdivdiv
StepHypRef Expression
1 simprrl 742 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  e.  CC )
2 simprll 740 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  e.  CC )
3 simprlr 741 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  =/=  0 )
4 divcl 9689 . . . . . . 7  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( D  /  C )  e.  CC )
51, 2, 3, 4syl3anc 1185 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  /  C )  e.  CC )
6 simpll 732 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  A  e.  CC )
7 simplrl 738 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  e.  CC )
8 simplrr 739 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  =/=  0 )
9 divcl 9689 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  e.  CC )
106, 7, 8, 9syl3anc 1185 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  /  B )  e.  CC )
115, 10mulcomd 9114 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  /  C
)  x.  ( A  /  B ) )  =  ( ( A  /  B )  x.  ( D  /  C
) ) )
12 simplr 733 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
13 simprl 734 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
14 divmuldiv 9719 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
156, 1, 12, 13, 14syl22anc 1186 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  x.  ( D  /  C ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
1611, 15eqtrd 2470 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  /  C
)  x.  ( A  /  B ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
1716oveq2d 6100 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) ) )
18 simprr 735 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  e.  CC  /\  D  =/=  0 ) )
19 divmuldiv 9719 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  ( ( D  e.  CC  /\  D  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
202, 1, 18, 13, 19syl22anc 1186 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( D  /  C ) )  =  ( ( C  x.  D )  / 
( D  x.  C
) ) )
212, 1mulcomd 9114 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2221oveq1d 6099 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  x.  D
)  /  ( D  x.  C ) )  =  ( ( D  x.  C )  / 
( D  x.  C
) ) )
231, 2mulcld 9113 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  x.  C )  e.  CC )
24 simprrr 743 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  =/=  0 )
251, 2, 24, 3mulne0d 9679 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  x.  C )  =/=  0 )
26 divid 9710 . . . . . . . 8  |-  ( ( ( D  x.  C
)  e.  CC  /\  ( D  x.  C
)  =/=  0 )  ->  ( ( D  x.  C )  / 
( D  x.  C
) )  =  1 )
2723, 25, 26syl2anc 644 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  x.  C
)  /  ( D  x.  C ) )  =  1 )
2822, 27eqtrd 2470 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  x.  D
)  /  ( D  x.  C ) )  =  1 )
2920, 28eqtrd 2470 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( D  /  C ) )  =  1 )
3029oveq1d 6099 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B ) )  =  ( 1  x.  ( A  /  B ) ) )
31 divcl 9689 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( C  /  D )  e.  CC )
322, 1, 24, 31syl3anc 1185 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  /  D )  e.  CC )
3332, 5, 10mulassd 9116 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B ) )  =  ( ( C  /  D )  x.  (
( D  /  C
)  x.  ( A  /  B ) ) ) )
3410mulid2d 9111 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
1  x.  ( A  /  B ) )  =  ( A  /  B ) )
3530, 33, 343eqtr3d 2478 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( A  /  B ) )
3617, 35eqtr3d 2472 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( A  x.  D )  /  ( B  x.  C ) ) )  =  ( A  /  B ) )
376, 1mulcld 9113 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  x.  D )  e.  CC )
387, 2mulcld 9113 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  e.  CC )
39 mulne0 9669 . . . . 5  |-  ( ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( B  x.  C
)  =/=  0 )
4039ad2ant2lr 730 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  =/=  0 )
41 divcl 9689 . . . 4  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( B  x.  C
)  =/=  0 )  ->  ( ( A  x.  D )  / 
( B  x.  C
) )  e.  CC )
4237, 38, 40, 41syl3anc 1185 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  x.  D
)  /  ( B  x.  C ) )  e.  CC )
43 divne0 9695 . . . 4  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  /  D
)  =/=  0 )
4443adantl 454 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  /  D )  =/=  0 )
45 divmul 9686 . . 3  |-  ( ( ( A  /  B
)  e.  CC  /\  ( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC  /\  ( ( C  /  D )  e.  CC  /\  ( C  /  D
)  =/=  0 ) )  ->  ( (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) )  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4610, 42, 32, 44, 45syl112anc 1189 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) )  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4736, 46mpbird 225 1  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601  (class class class)co 6084   CCcc 8993   0cc0 8995   1c1 8996    x. cmul 9000    / cdiv 9682
This theorem is referenced by:  recdiv  9725  divcan7  9728  divdiv1  9730  divdiv2  9731  divdivdivi  9782  divdivdivd  9842  qreccl  10599  pnt2  21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683
  Copyright terms: Public domain W3C validator