Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divides Structured version   Unicode version

Theorem divides 12846
 Description: Define the divides relation. means divides into with no remainder. For example, (ex-dvds 21748). As proven in dvdsval3 12848, . See divides 12846 and dvdsval2 12847 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divides
Distinct variable groups:   ,   ,

Proof of Theorem divides
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4205 . . 3
2 df-dvds 12845 . . . 4
32eleq2i 2499 . . 3
41, 3bitri 241 . 2
5 oveq2 6081 . . . . 5
65eqeq1d 2443 . . . 4
76rexbidv 2718 . . 3
8 eqeq2 2444 . . . 4
98rexbidv 2718 . . 3
107, 9opelopab2 4467 . 2
114, 10syl5bb 249 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wrex 2698  cop 3809   class class class wbr 4204  copab 4257  (class class class)co 6073   cmul 8987  cz 10274   cdivides 12844 This theorem is referenced by:  dvdsval2  12847  dvds0lem  12852  dvds1lem  12853  dvds2lem  12854  0dvds  12862  dvdsle  12887  odd2np1  12900  oddm1even  12901  divalglem4  12908  divalglem9  12913  divalgb  12916  bezoutlem4  13033  gcddiv  13041  dvdssqim  13045  coprmdvds2  13095  opeo  13179  omeo  13180  prmpwdvds  13264  odmulg  15184  gexdvdsi  15209  lgsquadlem2  21131  dvdspw  25361  dvdsrabdioph  26851  jm2.26a  27052 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-iota 5410  df-fv 5454  df-ov 6076  df-dvds 12845
 Copyright terms: Public domain W3C validator