MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divlogrlim Unicode version

Theorem divlogrlim 20093
Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
divlogrlim  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0

Proof of Theorem divlogrlim
Dummy variables  c 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 10778 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
2 eliooord 10802 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
32simpld 445 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  <  x )
41, 3rplogcld 20091 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( log `  x )  e.  RR+ )
54rprecred 10493 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  /  ( log `  x ) )  e.  RR )
65recnd 8951 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  /  ( log `  x ) )  e.  CC )
76rgen 2684 . . . . 5  |-  A. x  e.  ( 1 (,)  +oo ) ( 1  / 
( log `  x
) )  e.  CC
87a1i 10 . . . 4  |-  (  T. 
->  A. x  e.  ( 1 (,)  +oo )
( 1  /  ( log `  x ) )  e.  CC )
9 ioossre 10804 . . . . 5  |-  ( 1 (,)  +oo )  C_  RR
109a1i 10 . . . 4  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR )
118, 10rlim0lt 12079 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( 1  / 
( log `  x
) ) )  ~~> r  0  <->  A. y  e.  RR+  E. c  e.  RR  A. x  e.  ( 1 (,)  +oo ) ( c  < 
x  ->  ( abs `  ( 1  /  ( log `  x ) ) )  <  y ) ) )
1211trud 1323 . 2  |-  ( ( x  e.  ( 1 (,)  +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0  <->  A. y  e.  RR+  E. c  e.  RR  A. x  e.  ( 1 (,)  +oo ) ( c  < 
x  ->  ( abs `  ( 1  /  ( log `  x ) ) )  <  y ) )
13 id 19 . . . . 5  |-  ( y  e.  RR+  ->  y  e.  RR+ )
1413rprecred 10493 . . . 4  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR )
1514reefcld 12466 . . 3  |-  ( y  e.  RR+  ->  ( exp `  ( 1  /  y
) )  e.  RR )
165ad2antlr 707 . . . . . . 7  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( 1  /  ( log `  x ) )  e.  RR )
171ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  ->  x  e.  RR )
183ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
1  <  x )
1917, 18rplogcld 20091 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( log `  x
)  e.  RR+ )
2019rpreccld 10492 . . . . . . . 8  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( 1  /  ( log `  x ) )  e.  RR+ )
2120rpge0d 10486 . . . . . . 7  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
0  <_  ( 1  /  ( log `  x
) ) )
2216, 21absidd 12001 . . . . . 6  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( abs `  (
1  /  ( log `  x ) ) )  =  ( 1  / 
( log `  x
) ) )
23 simpll 730 . . . . . . 7  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
y  e.  RR+ )
244ad2antlr 707 . . . . . . 7  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( log `  x
)  e.  RR+ )
25 simpr 447 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( exp `  (
1  /  y ) )  <  x )
26 1rp 10450 . . . . . . . . . . . 12  |-  1  e.  RR+
2726a1i 10 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
1  e.  RR+ )
2827rpred 10482 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
1  e.  RR )
2928, 17, 18ltled 9057 . . . . . . . . . . 11  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
1  <_  x )
3017, 27, 29rpgecld 10517 . . . . . . . . . 10  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  ->  x  e.  RR+ )
3130reeflogd 20086 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( exp `  ( log `  x ) )  =  x )
3225, 31breqtrrd 4130 . . . . . . . 8  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( exp `  (
1  /  y ) )  <  ( exp `  ( log `  x
) ) )
3323rprecred 10493 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( 1  /  y
)  e.  RR )
3424rpred 10482 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( log `  x
)  e.  RR )
35 eflt 12494 . . . . . . . . 9  |-  ( ( ( 1  /  y
)  e.  RR  /\  ( log `  x )  e.  RR )  -> 
( ( 1  / 
y )  <  ( log `  x )  <->  ( exp `  ( 1  /  y
) )  <  ( exp `  ( log `  x
) ) ) )
3633, 34, 35syl2anc 642 . . . . . . . 8  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( ( 1  / 
y )  <  ( log `  x )  <->  ( exp `  ( 1  /  y
) )  <  ( exp `  ( log `  x
) ) ) )
3732, 36mpbird 223 . . . . . . 7  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( 1  /  y
)  <  ( log `  x ) )
3823, 24, 37ltrec1d 10502 . . . . . 6  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( 1  /  ( log `  x ) )  <  y )
3922, 38eqbrtrd 4124 . . . . 5  |-  ( ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  /\  ( exp `  ( 1  /  y ) )  <  x )  -> 
( abs `  (
1  /  ( log `  x ) ) )  <  y )
4039ex 423 . . . 4  |-  ( ( y  e.  RR+  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( exp `  (
1  /  y ) )  <  x  -> 
( abs `  (
1  /  ( log `  x ) ) )  <  y ) )
4140ralrimiva 2702 . . 3  |-  ( y  e.  RR+  ->  A. x  e.  ( 1 (,)  +oo ) ( ( exp `  ( 1  /  y
) )  <  x  ->  ( abs `  (
1  /  ( log `  x ) ) )  <  y ) )
42 breq1 4107 . . . . . 6  |-  ( c  =  ( exp `  (
1  /  y ) )  ->  ( c  <  x  <->  ( exp `  (
1  /  y ) )  <  x ) )
4342imbi1d 308 . . . . 5  |-  ( c  =  ( exp `  (
1  /  y ) )  ->  ( (
c  <  x  ->  ( abs `  ( 1  /  ( log `  x
) ) )  < 
y )  <->  ( ( exp `  ( 1  / 
y ) )  < 
x  ->  ( abs `  ( 1  /  ( log `  x ) ) )  <  y ) ) )
4443ralbidv 2639 . . . 4  |-  ( c  =  ( exp `  (
1  /  y ) )  ->  ( A. x  e.  ( 1 (,)  +oo ) ( c  <  x  ->  ( abs `  ( 1  / 
( log `  x
) ) )  < 
y )  <->  A. x  e.  ( 1 (,)  +oo ) ( ( exp `  ( 1  /  y
) )  <  x  ->  ( abs `  (
1  /  ( log `  x ) ) )  <  y ) ) )
4544rspcev 2960 . . 3  |-  ( ( ( exp `  (
1  /  y ) )  e.  RR  /\  A. x  e.  ( 1 (,)  +oo ) ( ( exp `  ( 1  /  y ) )  <  x  ->  ( abs `  ( 1  / 
( log `  x
) ) )  < 
y ) )  ->  E. c  e.  RR  A. x  e.  ( 1 (,)  +oo ) ( c  <  x  ->  ( abs `  ( 1  / 
( log `  x
) ) )  < 
y ) )
4615, 41, 45syl2anc 642 . 2  |-  ( y  e.  RR+  ->  E. c  e.  RR  A. x  e.  ( 1 (,)  +oo ) ( c  < 
x  ->  ( abs `  ( 1  /  ( log `  x ) ) )  <  y ) )
4712, 46mprgbir 2689 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    T. wtru 1316    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620    C_ wss 3228   class class class wbr 4104    e. cmpt 4158   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827   1c1 8828    +oocpnf 8954    < clt 8957    / cdiv 9513   RR+crp 10446   (,)cioo 10748   abscabs 11815    ~~> r crli 12055   expce 12440   logclog 20019
This theorem is referenced by:  logno1  20094  vmalogdivsum2  20799  2vmadivsumlem  20801  selberg4lem1  20821  pntrlog2bndlem2  20839  pntrlog2bndlem4  20841  pntrlog2bndlem5  20842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ioc 10753  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-fac 11382  df-bc 11409  df-hash 11431  df-shft 11658  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-limsup 12041  df-clim 12058  df-rlim 12059  df-sum 12256  df-ef 12446  df-sin 12448  df-cos 12449  df-pi 12451  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-lp 16974  df-perf 16975  df-cn 17063  df-cnp 17064  df-haus 17149  df-tx 17363  df-hmeo 17552  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-xms 17987  df-ms 17988  df-tms 17989  df-cncf 18485  df-limc 19320  df-dv 19321  df-log 20021
  Copyright terms: Public domain W3C validator