MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Unicode version

Theorem divrcnv 12591
Description: The sequence of reciprocals of real numbers, multiplied by the factor  A, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv  |-  ( A  e.  CC  ->  (
n  e.  RR+  |->  ( A  /  n ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem divrcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 12042 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2 rerpdivcl 10599 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
31, 2sylan 458 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
4 simpll 731 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  A  e.  CC )
5 rpcn 10580 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  n  e.  CC )
65ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  e.  CC )
7 rpne0 10587 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  n  =/=  0 )
87ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  =/=  0
)
94, 6, 8absdivd 12216 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  =  ( ( abs `  A )  /  ( abs `  n ) ) )
10 rpre 10578 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
1110ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  e.  RR )
12 rpge0 10584 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_  n )
1312ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <_  n
)
1411, 13absidd 12184 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  n
)  =  n )
1514oveq2d 6060 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  ( abs `  n ) )  =  ( ( abs `  A )  /  n
) )
169, 15eqtrd 2440 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  =  ( ( abs `  A )  /  n
) )
17 simprr 734 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  x
)  <  n )
184abscld 12197 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  A
)  e.  RR )
19 rpre 10578 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e.  RR )
2019ad2antlr 708 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  x  e.  RR )
21 rpgt0 10583 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  < 
x )
2221ad2antlr 708 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <  x
)
23 rpgt0 10583 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  < 
n )
2423ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <  n
)
25 ltdiv23 9861 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( ( abs `  A )  /  x
)  <  n  <->  ( ( abs `  A )  /  n )  <  x
) )
2618, 20, 22, 11, 24, 25syl122anc 1193 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( ( abs `  A )  /  x )  < 
n  <->  ( ( abs `  A )  /  n
)  <  x )
)
2717, 26mpbid 202 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  n
)  <  x )
2816, 27eqbrtrd 4196 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  <  x )
2928expr 599 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  n  e.  RR+ )  ->  ( ( ( abs `  A )  /  x
)  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
3029ralrimiva 2753 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. n  e.  RR+  (
( ( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) )
31 breq1 4179 . . . . . . 7  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( y  <  n  <->  ( ( abs `  A )  /  x
)  <  n )
)
3231imbi1d 309 . . . . . 6  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x )  <->  ( (
( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) ) )
3332ralbidv 2690 . . . . 5  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  < 
x )  <->  A. n  e.  RR+  ( ( ( abs `  A )  /  x )  < 
n  ->  ( abs `  ( A  /  n
) )  <  x
) ) )
3433rspcev 3016 . . . 4  |-  ( ( ( ( abs `  A
)  /  x )  e.  RR  /\  A. n  e.  RR+  ( ( ( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
353, 30, 34syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
3635ralrimiva 2753 . 2  |-  ( A  e.  CC  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
37 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  A  e.  CC )
385adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  n  e.  CC )
397adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  n  =/=  0 )
4037, 38, 39divcld 9750 . . . 4  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  -> 
( A  /  n
)  e.  CC )
4140ralrimiva 2753 . . 3  |-  ( A  e.  CC  ->  A. n  e.  RR+  ( A  /  n )  e.  CC )
42 rpssre 10582 . . . 4  |-  RR+  C_  RR
4342a1i 11 . . 3  |-  ( A  e.  CC  ->  RR+  C_  RR )
4441, 43rlim0lt 12262 . 2  |-  ( A  e.  CC  ->  (
( n  e.  RR+  |->  ( A  /  n
) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) ) )
4536, 44mpbird 224 1  |-  ( A  e.  CC  ->  (
n  e.  RR+  |->  ( A  /  n ) )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   E.wrex 2671    C_ wss 3284   class class class wbr 4176    e. cmpt 4230   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950    < clt 9080    <_ cle 9081    / cdiv 9637   RR+crp 10572   abscabs 11998    ~~> r crli 12238
This theorem is referenced by:  divcnv  12592  cxp2limlem  20771  logfacrlim  20965  dchrmusumlema  21144  mudivsum  21181  selberg2lem  21201  pntrsumo1  21216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-pm 6984  df-en 7073  df-dom 7074  df-sdom 7075  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-rlim 12242
  Copyright terms: Public domain W3C validator