Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Unicode version

Theorem divrngidl 26630
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1  |-  G  =  ( 1st `  R
)
divrngidl.2  |-  H  =  ( 2nd `  R
)
divrngidl.3  |-  X  =  ran  G
divrngidl.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
divrngidl  |-  ( R  e.  DivRingOps  ->  ( Idl `  R
)  =  { { Z } ,  X }
)

Proof of Theorem divrngidl
Dummy variables  i  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3  |-  G  =  ( 1st `  R
)
2 divrngidl.2 . . 3  |-  H  =  ( 2nd `  R
)
3 divrngidl.4 . . 3  |-  Z  =  (GId `  G )
4 divrngidl.3 . . 3  |-  X  =  ran  G
5 eqid 2436 . . 3  |-  (GId `  H )  =  (GId
`  H )
61, 2, 3, 4, 5isdrngo2 26566 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( (GId `  H )  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
) ) )
71, 3idl0cl 26620 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  Z  e.  i )
87adantr 452 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  Z  e.  i )
9 fvex 5735 . . . . . . . . . . . . . 14  |-  (GId `  G )  e.  _V
103, 9eqeltri 2506 . . . . . . . . . . . . 13  |-  Z  e. 
_V
1110snss 3919 . . . . . . . . . . . 12  |-  ( Z  e.  i  <->  { Z }  C_  i )
12 necom 2680 . . . . . . . . . . . 12  |-  ( i  =/=  { Z }  <->  { Z }  =/=  i
)
13 pssdifn0 3682 . . . . . . . . . . . . 13  |-  ( ( { Z }  C_  i  /\  { Z }  =/=  i )  ->  (
i  \  { Z } )  =/=  (/) )
14 n0 3630 . . . . . . . . . . . . 13  |-  ( ( i  \  { Z } )  =/=  (/)  <->  E. z 
z  e.  ( i 
\  { Z }
) )
1513, 14sylib 189 . . . . . . . . . . . 12  |-  ( ( { Z }  C_  i  /\  { Z }  =/=  i )  ->  E. z 
z  e.  ( i 
\  { Z }
) )
1611, 12, 15syl2anb 466 . . . . . . . . . . 11  |-  ( ( Z  e.  i  /\  i  =/=  { Z }
)  ->  E. z 
z  e.  ( i 
\  { Z }
) )
171, 4idlss 26618 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  i  C_  X )
18 ssdif 3475 . . . . . . . . . . . . . . . . . 18  |-  ( i 
C_  X  ->  (
i  \  { Z } )  C_  ( X  \  { Z }
) )
1918sselda 3341 . . . . . . . . . . . . . . . . 17  |-  ( ( i  C_  X  /\  z  e.  ( i  \  { Z } ) )  ->  z  e.  ( X  \  { Z } ) )
2017, 19sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  ->  z  e.  ( X  \  { Z } ) )
21 oveq2 6082 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
y H x )  =  ( y H z ) )
2221eqeq1d 2444 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( y H x )  =  (GId `  H )  <->  ( y H z )  =  (GId `  H )
) )
2322rexbidv 2719 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  ( E. y  e.  ( X  \  { Z }
) ( y H x )  =  (GId
`  H )  <->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
) )
2423rspcva 3043 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( X 
\  { Z }
)  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
)
2520, 24sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
)
26 eldifi 3462 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( i  \  { Z } )  -> 
z  e.  i )
27 eldifi 3462 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( X  \  { Z } )  -> 
y  e.  X )
2826, 27anim12i 550 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ( i 
\  { Z }
)  /\  y  e.  ( X  \  { Z } ) )  -> 
( z  e.  i  /\  y  e.  X
) )
291, 2, 4idllmulcl 26622 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
y H z )  e.  i )
301, 2, 4, 51idl 26628 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (
(GId `  H )  e.  i  <->  i  =  X ) )
3130biimpd 199 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (
(GId `  H )  e.  i  ->  i  =  X ) )
3231adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
(GId `  H )  e.  i  ->  i  =  X ) )
33 eleq1 2496 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y H z )  =  (GId `  H
)  ->  ( (
y H z )  e.  i  <->  (GId `  H
)  e.  i ) )
3433imbi1d 309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y H z )  =  (GId `  H
)  ->  ( (
( y H z )  e.  i  -> 
i  =  X )  <-> 
( (GId `  H
)  e.  i  -> 
i  =  X ) ) )
3532, 34syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
( y H z )  =  (GId `  H )  ->  (
( y H z )  e.  i  -> 
i  =  X ) ) )
3629, 35mpid 39 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
( y H z )  =  (GId `  H )  ->  i  =  X ) )
3728, 36sylan2 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  ( i  \  { Z } )  /\  y  e.  ( X  \  { Z } ) ) )  ->  ( ( y H z )  =  (GId `  H )  ->  i  =  X ) )
3837anassrs 630 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  y  e.  ( X  \  { Z } ) )  ->  ( (
y H z )  =  (GId `  H
)  ->  i  =  X ) )
3938rexlimdva 2823 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )  ->  i  =  X ) )
4039imp 419 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  E. y  e.  ( X 
\  { Z }
) ( y H z )  =  (GId
`  H ) )  ->  i  =  X )
4125, 40syldan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  i  =  X )
4241an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  z  e.  ( i  \  { Z } ) )  -> 
i  =  X )
4342ex 424 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( z  e.  ( i  \  { Z } )  ->  i  =  X ) )
4443exlimdv 1646 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( E. z  z  e.  (
i  \  { Z } )  ->  i  =  X ) )
4516, 44syl5 30 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( ( Z  e.  i  /\  i  =/=  { Z }
)  ->  i  =  X ) )
468, 45mpand 657 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  =/=  { Z }  ->  i  =  X ) )
4746an32s 780 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  i  e.  ( Idl `  R ) )  ->  ( i  =/=  { Z }  ->  i  =  X ) )
48 neor 2683 . . . . . . . 8  |-  ( ( i  =  { Z }  \/  i  =  X )  <->  ( i  =/=  { Z }  ->  i  =  X ) )
4947, 48sylibr 204 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  i  e.  ( Idl `  R ) )  ->  ( i  =  { Z }  \/  i  =  X )
)
5049ex 424 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  ->  ( i  =  { Z }  \/  i  =  X )
) )
511, 30idl 26627 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
52 eleq1 2496 . . . . . . . . 9  |-  ( i  =  { Z }  ->  ( i  e.  ( Idl `  R )  <->  { Z }  e.  ( Idl `  R ) ) )
5351, 52syl5ibrcom 214 . . . . . . . 8  |-  ( R  e.  RingOps  ->  ( i  =  { Z }  ->  i  e.  ( Idl `  R
) ) )
541, 4rngoidl 26626 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  X  e.  ( Idl `  R ) )
55 eleq1 2496 . . . . . . . . 9  |-  ( i  =  X  ->  (
i  e.  ( Idl `  R )  <->  X  e.  ( Idl `  R ) ) )
5654, 55syl5ibrcom 214 . . . . . . . 8  |-  ( R  e.  RingOps  ->  ( i  =  X  ->  i  e.  ( Idl `  R ) ) )
5753, 56jaod 370 . . . . . . 7  |-  ( R  e.  RingOps  ->  ( ( i  =  { Z }  \/  i  =  X
)  ->  i  e.  ( Idl `  R ) ) )
5857adantr 452 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( (
i  =  { Z }  \/  i  =  X )  ->  i  e.  ( Idl `  R
) ) )
5950, 58impbid 184 . . . . 5  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  <->  ( i  =  { Z }  \/  i  =  X )
) )
60 vex 2952 . . . . . 6  |-  i  e. 
_V
6160elpr 3825 . . . . 5  |-  ( i  e.  { { Z } ,  X }  <->  ( i  =  { Z }  \/  i  =  X ) )
6259, 61syl6bbr 255 . . . 4  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  <->  i  e.  { { Z } ,  X } ) )
6362eqrdv 2434 . . 3  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( Idl `  R )  =  { { Z } ,  X } )
6463adantrl 697 . 2  |-  ( ( R  e.  RingOps  /\  (
(GId `  H )  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
) )  ->  ( Idl `  R )  =  { { Z } ,  X } )
656, 64sylbi 188 1  |-  ( R  e.  DivRingOps  ->  ( Idl `  R
)  =  { { Z } ,  X }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2698   E.wrex 2699   _Vcvv 2949    \ cdif 3310    C_ wss 3313   (/)c0 3621   {csn 3807   {cpr 3808   ran crn 4872   ` cfv 5447  (class class class)co 6074   1stc1st 6340   2ndc2nd 6341  GIdcgi 21768   RingOpscrngo 21956   DivRingOpscdrng 21986   Idlcidl 26609
This theorem is referenced by:  divrngpr  26655  isfldidl  26670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-1st 6342  df-2nd 6343  df-riota 6542  df-1o 6717  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-grpo 21772  df-gid 21773  df-ginv 21774  df-ablo 21863  df-ass 21894  df-exid 21896  df-mgm 21900  df-sgr 21912  df-mndo 21919  df-rngo 21957  df-drngo 21987  df-idl 26612
  Copyright terms: Public domain W3C validator