MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsaddf Unicode version

Theorem divsaddf 13706
Description: The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
divsaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
divsaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
divsaddf.r  |-  ( ph  ->  .~  Er  V )
divsaddf.z  |-  ( ph  ->  R  e.  Z )
divsaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
divsaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
divsaddf.p  |-  .x.  =  ( +g  `  R )
divsaddf.a  |-  .xb  =  ( +g  `  U )
Assertion
Ref Expression
divsaddf  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Distinct variable groups:    a, b, p, q,  .~    ph, a,
b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    .xb , a, b, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    Z( q, p, a, b)

Proof of Theorem divsaddf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divsaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 divsaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 divsaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 divsaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 divsaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 divsaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2387 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 fvex 5682 . . . . . 6  |-  ( Base `  R )  e.  _V
92, 8syl6eqel 2475 . . . . 5  |-  ( ph  ->  V  e.  _V )
10 erex 6865 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
113, 9, 10sylc 58 . . . 4  |-  ( ph  ->  .~  e.  _V )
121, 2, 7, 11, 4divsval 13694 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
131, 2, 7, 11, 4divslem 13695 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
14 divsaddf.p . . 3  |-  .x.  =  ( +g  `  R )
15 divsaddf.a . . 3  |-  .xb  =  ( +g  `  U )
1612, 2, 13, 4, 14, 15imasplusg 13670 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
171, 2, 3, 4, 5, 6, 7, 16divsaddflem 13704 1  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   class class class wbr 4153    e. cmpt 4207    X. cxp 4816   -->wf 5390   ` cfv 5394  (class class class)co 6020    Er wer 6838   [cec 6839   /.cqs 6840   Basecbs 13396   +g cplusg 13456    /.s cqus 13658
This theorem is referenced by:  pi1addf  18943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-ec 6843  df-qs 6847  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-imas 13661  df-divs 13662
  Copyright terms: Public domain W3C validator