MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsaddflem Unicode version

Theorem divsaddflem 13454
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
divsaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
divsaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
divsaddf.r  |-  ( ph  ->  .~  Er  V )
divsaddf.z  |-  ( ph  ->  R  e.  Z )
divsaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
divsaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
divsaddflem.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
divsaddflem.g  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Assertion
Ref Expression
divsaddflem  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Distinct variable groups:    a, b, p, q, x,  .~    F, a, b, p, q    ph, a,
b, p, q, x    V, a, b, p, q, x    R, p, q, x    .x. , p, q, x    .xb , a,
b, p, q
Allowed substitution hints:    R( a, b)    .xb (
x)    .x. ( a, b)    U( x, q, p, a, b)    F( x)    Z( x, q, p, a, b)

Proof of Theorem divsaddflem
StepHypRef Expression
1 divsaddf.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 divsaddf.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 divsaddflem.f . . 3  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 divsaddf.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 fvex 5539 . . . . 5  |-  ( Base `  R )  e.  _V
62, 5syl6eqel 2371 . . . 4  |-  ( ph  ->  V  e.  _V )
7 erex 6684 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
84, 6, 7sylc 56 . . 3  |-  ( ph  ->  .~  e.  _V )
9 divsaddf.z . . 3  |-  ( ph  ->  R  e.  Z )
101, 2, 3, 8, 9divslem 13445 . 2  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
11 divsaddf.c . . 3  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
12 divsaddf.e . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
134, 6, 3, 11, 12ercpbl 13451 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
14 divsaddflem.g . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
1510, 13, 14, 11imasaddflem 13432 1  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   <.cop 3643   U_ciun 3905   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858    Er wer 6657   [cec 6658   /.cqs 6659   Basecbs 13148    /.s cqus 13408
This theorem is referenced by:  divsaddf  13456  divsmulf  13458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-er 6660  df-ec 6662  df-qs 6666
  Copyright terms: Public domain W3C validator