MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsaddval Unicode version

Theorem divsaddval 13665
Description: The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
divsaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
divsaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
divsaddf.r  |-  ( ph  ->  .~  Er  V )
divsaddf.z  |-  ( ph  ->  R  e.  Z )
divsaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
divsaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
divsaddf.p  |-  .x.  =  ( +g  `  R )
divsaddf.a  |-  .xb  =  ( +g  `  U )
Assertion
Ref Expression
divsaddval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q,  .~    ph, a,
b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    X, p, q    .xb , a,
b, p, q    Y, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    X( a, b)    Y( a, b)    Z( q, p, a, b)

Proof of Theorem divsaddval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divsaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 divsaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 divsaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 divsaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 divsaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 divsaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2366 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 fvex 5646 . . . . . 6  |-  ( Base `  R )  e.  _V
92, 8syl6eqel 2454 . . . . 5  |-  ( ph  ->  V  e.  _V )
10 erex 6826 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
113, 9, 10sylc 56 . . . 4  |-  ( ph  ->  .~  e.  _V )
121, 2, 7, 11, 4divsval 13654 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
131, 2, 7, 11, 4divslem 13655 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
14 divsaddf.p . . 3  |-  .x.  =  ( +g  `  R )
15 divsaddf.a . . 3  |-  .xb  =  ( +g  `  U )
1612, 2, 13, 4, 14, 15imasplusg 13630 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
171, 2, 3, 4, 5, 6, 7, 16divsaddvallem 13663 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   _Vcvv 2873   class class class wbr 4125    e. cmpt 4179   ` cfv 5358  (class class class)co 5981    Er wer 6799   [cec 6800   /.cqs 6801   Basecbs 13356   +g cplusg 13416    /.s cqus 13618
This theorem is referenced by:  divsadd  14884  frgpadd  15282  pi1addval  18761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-ec 6804  df-qs 6808  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-plusg 13429  df-mulr 13430  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-imas 13621  df-divs 13622
  Copyright terms: Public domain W3C validator