MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsaddval Structured version   Unicode version

Theorem divsaddval 13783
Description: The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
divsaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
divsaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
divsaddf.r  |-  ( ph  ->  .~  Er  V )
divsaddf.z  |-  ( ph  ->  R  e.  Z )
divsaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
divsaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
divsaddf.p  |-  .x.  =  ( +g  `  R )
divsaddf.a  |-  .xb  =  ( +g  `  U )
Assertion
Ref Expression
divsaddval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q,  .~    ph, a,
b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    X, p, q    .xb , a,
b, p, q    Y, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    X( a, b)    Y( a, b)    Z( q, p, a, b)

Proof of Theorem divsaddval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divsaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 divsaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 divsaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 divsaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 divsaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 divsaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2438 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 fvex 5745 . . . . . 6  |-  ( Base `  R )  e.  _V
92, 8syl6eqel 2526 . . . . 5  |-  ( ph  ->  V  e.  _V )
10 erex 6932 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
113, 9, 10sylc 59 . . . 4  |-  ( ph  ->  .~  e.  _V )
121, 2, 7, 11, 4divsval 13772 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
131, 2, 7, 11, 4divslem 13773 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
14 divsaddf.p . . 3  |-  .x.  =  ( +g  `  R )
15 divsaddf.a . . 3  |-  .xb  =  ( +g  `  U )
1612, 2, 13, 4, 14, 15imasplusg 13748 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
171, 2, 3, 4, 5, 6, 7, 16divsaddvallem 13781 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958   class class class wbr 4215    e. cmpt 4269   ` cfv 5457  (class class class)co 6084    Er wer 6905   [cec 6906   /.cqs 6907   Basecbs 13474   +g cplusg 13534    /.s cqus 13736
This theorem is referenced by:  divsadd  15002  frgpadd  15400  pi1addval  19078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-ec 6910  df-qs 6914  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-imas 13739  df-divs 13740
  Copyright terms: Public domain W3C validator