MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divstgpopn Structured version   Unicode version

Theorem divstgpopn 18149
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
divstgp.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
divstgpopn.x  |-  X  =  ( Base `  G
)
divstgpopn.j  |-  J  =  ( TopOpen `  G )
divstgpopn.k  |-  K  =  ( TopOpen `  H )
divstgpopn.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
divstgpopn  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Distinct variable groups:    x, G    x, J    x, S    x, X    x, H    x, K    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem divstgpopn
Dummy variables  a  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5216 . . . 4  |-  ( F
" S )  C_  ran  F
2 divstgp.h . . . . . . 7  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
32a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( G  /.s  ( G ~QG  Y ) ) )
4 divstgpopn.x . . . . . . 7  |-  X  =  ( Base `  G
)
54a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  X  =  ( Base `  G )
)
6 divstgpopn.f . . . . . 6  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
7 ovex 6106 . . . . . . 7  |-  ( G ~QG  Y )  e.  _V
87a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( G ~QG  Y
)  e.  _V )
9 simp1 957 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  G  e.  TopGrp )
103, 5, 6, 8, 9divslem 13768 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  F : X -onto-> ( X /. ( G ~QG  Y ) ) )
11 forn 5656 . . . . 5  |-  ( F : X -onto-> ( X /. ( G ~QG  Y ) )  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
1210, 11syl 16 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
131, 12syl5sseq 3396 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  C_  ( X /. ( G ~QG  Y ) ) )
14 eceq1 6941 . . . . . . . . . 10  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
1514cbvmptv 4300 . . . . . . . . 9  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
166, 15eqtri 2456 . . . . . . . 8  |-  F  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
1716mptpreima 5363 . . . . . . 7  |-  ( `' F " ( F
" S ) )  =  { y  e.  X  |  [ y ] ( G ~QG  Y )  e.  ( F " S ) }
1817rabeq2i 2953 . . . . . 6  |-  ( y  e.  ( `' F " ( F " S
) )  <->  ( y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F " S ) ) )
196funmpt2 5490 . . . . . . . . 9  |-  Fun  F
20 fvelima 5778 . . . . . . . . 9  |-  ( ( Fun  F  /\  [
y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
2119, 20mpan 652 . . . . . . . 8  |-  ( [ y ] ( G ~QG  Y )  e.  ( F
" S )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
22 divstgpopn.j . . . . . . . . . . . . . . . . . . 19  |-  J  =  ( TopOpen `  G )
2322, 4tgptopon 18112 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
249, 23syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  J  e.  (TopOn `  X ) )
25 simp3 959 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  e.  J )
26 toponss 16994 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  S  e.  J )  ->  S  C_  X )
2724, 25, 26syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  C_  X
)
2827adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  S  C_  X )
2928sselda 3348 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  z  e.  X )
30 eceq1 6941 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
31 ecexg 6909 . . . . . . . . . . . . . . . 16  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
327, 31ax-mp 8 . . . . . . . . . . . . . . 15  |-  [ z ] ( G ~QG  Y )  e.  _V
3330, 6, 32fvmpt 5806 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3429, 33syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3534eqeq1d 2444 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ z ] ( G ~QG  Y )  =  [
y ] ( G ~QG  Y ) ) )
36 eqcom 2438 . . . . . . . . . . . 12  |-  ( [ z ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) )
3735, 36syl6bb 253 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
38 nsgsubg 14972 . . . . . . . . . . . . . . 15  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
39383ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  Y  e.  (SubGrp `  G ) )
4039ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  e.  (SubGrp `  G )
)
41 eqid 2436 . . . . . . . . . . . . . 14  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
424, 41eqger 14990 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  X )
4340, 42syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( G ~QG  Y )  Er  X
)
44 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  y  e.  X )
4543, 44erth 6949 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
469ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  G  e.  TopGrp )
474subgss 14945 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
4840, 47syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  C_  X )
49 eqid 2436 . . . . . . . . . . . . 13  |-  ( inv g `  G )  =  ( inv g `  G )
50 eqid 2436 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
514, 49, 50, 41eqgval 14989 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  Y  C_  X )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5246, 48, 51syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5337, 45, 523bitr2d 273 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <-> 
( y  e.  X  /\  z  e.  X  /\  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
54 eqid 2436 . . . . . . . . . . . . . . . . . 18  |-  (oppg `  G
)  =  (oppg `  G
)
55 eqid 2436 . . . . . . . . . . . . . . . . . 18  |-  ( +g  `  (oppg
`  G ) )  =  ( +g  `  (oppg `  G
) )
5650, 54, 55oppgplus 15145 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a )  =  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )
5756mpteq2i 4292 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
5846adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  TopGrp )
5954oppgtgp 18128 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  (oppg
`  G )  e. 
TopGrp )
6058, 59syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (oppg `  G
)  e.  TopGrp )
6148sselda 3348 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  X )
62 eqid 2436 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  X  |->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )
6354, 4oppgbas 15147 . . . . . . . . . . . . . . . . . 18  |-  X  =  ( Base `  (oppg `  G
) )
6454, 22oppgtopn 15149 . . . . . . . . . . . . . . . . . 18  |-  J  =  ( TopOpen `  (oppg
`  G ) )
6562, 63, 55, 64tgplacthmeo 18133 . . . . . . . . . . . . . . . . 17  |-  ( ( (oppg
`  G )  e. 
TopGrp  /\  ( ( ( inv g `  G
) `  y )
( +g  `  G ) z )  e.  X
)  ->  ( a  e.  X  |->  ( ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  e.  ( J 
Homeo  J ) )
6660, 61, 65syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ( +g  `  (oppg
`  G ) ) a ) )  e.  ( J  Homeo  J ) )
6757, 66syl5eqelr 2521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Homeo  J ) )
68 hmeocn 17792 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Homeo  J )  ->  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
6967, 68syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
7025ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  S  e.  J )
71 cnima 17329 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( J  Cn  J )  /\  S  e.  J )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J )
7269, 70, 71syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  e.  J )
7344adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  X )
74 tgpgrp 18108 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
7558, 74syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  Grp )
76 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  G )  =  ( 0g `  G
)
774, 50, 76, 49grprinv 14852 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( inv g `  G
) `  y )
)  =  ( 0g
`  G ) )
7875, 73, 77syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( inv g `  G ) `
 y ) )  =  ( 0g `  G ) )
7978oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( inv g `  G
) `  y )
) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
804, 49grpinvcl 14850 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( inv g `  G ) `  y
)  e.  X )
8175, 73, 80syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( inv g `  G ) `  y
)  e.  X )
8229adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  X )
834, 50grpass 14819 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( inv g `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )
8475, 73, 81, 82, 83syl13anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( inv g `  G
) `  y )
) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )
854, 50, 76grplid 14835 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
8675, 82, 85syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( 0g `  G
) ( +g  `  G
) z )  =  z )
8779, 84, 863eqtr3d 2476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  =  z )
88 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  S )
8987, 88eqeltrd 2510 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  S )
90 oveq1 6088 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  (
a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  =  ( y ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )
9190eleq1d 2502 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  (
( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  <->  ( y
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S ) )
92 eqid 2436 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  =  ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
9392mptpreima 5363 . . . . . . . . . . . . . . 15  |-  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) ) " S )  =  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  S }
9491, 93elrab2 3094 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  <->  ( y  e.  X  /\  (
y ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  S ) )
9573, 89, 94sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) )
96 ecexg 6909 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G ~QG  Y )  e.  _V  ->  [ x ] ( G ~QG  Y )  e.  _V )
977, 96ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  [ x ] ( G ~QG  Y )  e.  _V
9897, 6fnmpti 5573 . . . . . . . . . . . . . . . . 17  |-  F  Fn  X
9928ad3antrrr 711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  S  C_  X )
100 fnfvima 5976 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  X  /\  S  C_  X  /\  (
a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  S )  ->  ( F `  ( a
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) )
1011003expia 1155 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  X  /\  S  C_  X )  -> 
( ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S  ->  ( F `  ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( F
" S ) ) )
10298, 99, 101sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  ( F `  ( a
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) ) )
10375adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  G  e.  Grp )
104 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a  e.  X )
10561adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  X )
1064, 50grpcl 14818 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( a
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  e.  X )
107103, 104, 105, 106syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  X )
108 eceq1 6941 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  ->  [ x ] ( G ~QG  Y )  =  [
( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) ] ( G ~QG  Y ) )
109108, 6, 97fvmpt3i 5809 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  X  ->  ( F `  ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
110107, 109syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
11143ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( G ~QG  Y )  Er  X
)
1124, 50, 76, 49grplinv 14851 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( ( inv g `  G ) `
 a ) ( +g  `  G ) a )  =  ( 0g `  G ) )
113103, 104, 112syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( inv g `  G ) `  a
) ( +g  `  G
) a )  =  ( 0g `  G
) )
114113oveq1d 6096 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( inv g `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( 0g
`  G ) ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
1154, 49grpinvcl 14850 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( inv g `  G ) `  a
)  e.  X )
116103, 104, 115syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( inv g `  G ) `  a
)  e.  X )
1174, 50grpass 14819 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( inv g `  G ) `
 a )  e.  X  /\  a  e.  X  /\  ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  a )
( +g  `  G ) a ) ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( inv g `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) ) )
118103, 116, 104, 105, 117syl13anc 1186 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( inv g `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( inv g `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) ) ) )
1194, 50, 76grplid 14835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )
120103, 105, 119syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( 0g `  G
) ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  =  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )
121114, 118, 1203eqtr3d 2476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( inv g `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )
122 simplr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )
123121, 122eqeltrd 2510 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( inv g `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y )
12448ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  Y  C_  X )
1254, 49, 50, 41eqgval 14989 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) )  <->  ( a  e.  X  /\  (
a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  X  /\  ( ( ( inv g `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
126103, 124, 125syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  <-> 
( a  e.  X  /\  ( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  e.  X  /\  (
( ( inv g `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
127104, 107, 123, 126mpbir3and 1137 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a
( G ~QG  Y ) ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
128111, 127erthi 6951 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  [ a ] ( G ~QG  Y )  =  [ ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
129110, 128eqtr4d 2471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ a ] ( G ~QG  Y ) )
130129eleq1d 2502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( F `  (
a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( F " S )  <->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
131102, 130sylibd 206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( inv g `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
132131ss2rabdv 3424 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) )  e.  S }  C_  { a  e.  X  |  [
a ] ( G ~QG  Y )  e.  ( F
" S ) } )
133 eceq1 6941 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  [ x ] ( G ~QG  Y )  =  [ a ] ( G ~QG  Y ) )
134133cbvmptv 4300 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
1356, 134eqtri 2456 . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
136135mptpreima 5363 . . . . . . . . . . . . . 14  |-  ( `' F " ( F
" S ) )  =  { a  e.  X  |  [ a ] ( G ~QG  Y )  e.  ( F " S ) }
137132, 93, 1363sstr4g 3389 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) )
138 eleq2 2497 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( y  e.  u  <->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) ) )
139 sseq1 3369 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( u  C_  ( `' F " ( F
" S ) )  <-> 
( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )
140138, 139anbi12d 692 . . . . . . . . . . . . . 14  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) )  <->  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) ) )
141140rspcev 3052 . . . . . . . . . . . . 13  |-  ( ( ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J  /\  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( inv g `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
14272, 95, 137, 141syl12anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( inv g `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
1431423ad2antr3 1124 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
y  e.  X  /\  z  e.  X  /\  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
144143ex 424 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( y  e.  X  /\  z  e.  X  /\  ( ( ( inv g `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
)  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14553, 144sylbid 207 . . . . . . . . 9  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
146145rexlimdva 2830 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14721, 146syl5 30 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( [ y ] ( G ~QG  Y )  e.  ( F " S )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
148147expimpd 587 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( (
y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
14918, 148syl5bi 209 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( y  e.  ( `' F "
( F " S
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
150149ralrimiv 2788 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
151 topontop 16991 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
152 eltop2 17040 . . . . 5  |-  ( J  e.  Top  ->  (
( `' F "
( F " S
) )  e.  J  <->  A. y  e.  ( `' F " ( F
" S ) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
15324, 151, 1523syl 19 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( `' F " ( F
" S ) )  e.  J  <->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
154150, 153mpbird 224 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( `' F " ( F " S ) )  e.  J )
155 elqtop3 17735 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ( X /. ( G ~QG  Y ) ) )  ->  ( ( F
" S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15624, 10, 155syl2anc 643 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( F " S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15713, 154, 156mpbir2and 889 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  ( J qTop  F ) )
1583, 5, 6, 8, 9divsval 13767 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( F  "s  G ) )
159 divstgpopn.k . . 3  |-  K  =  ( TopOpen `  H )
160158, 5, 10, 9, 22, 159imastopn 17752 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  K  =  ( J qTop  F )
)
161157, 160eleqtrrd 2513 1  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   `'ccnv 4877   ran crn 4879   "cima 4881   Fun wfun 5448    Fn wfn 5449   -onto->wfo 5452   ` cfv 5454  (class class class)co 6081    Er wer 6902   [cec 6903   /.cqs 6904   Basecbs 13469   +g cplusg 13529   TopOpenctopn 13649   0gc0g 13723   qTop cqtop 13729    /.s cqus 13731   Grpcgrp 14685   inv gcminusg 14686  SubGrpcsubg 14938  NrmSGrpcnsg 14939   ~QG cqg 14940  oppgcoppg 15141   Topctop 16958  TopOnctopon 16959    Cn ccn 17288    Homeo chmeo 17785   TopGrpctgp 18101
This theorem is referenced by:  divstgplem  18150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-rest 13650  df-topn 13651  df-topgen 13667  df-0g 13727  df-qtop 13733  df-imas 13734  df-divs 13735  df-mnd 14690  df-plusf 14691  df-grp 14812  df-minusg 14813  df-subg 14941  df-nsg 14942  df-eqg 14943  df-oppg 15142  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cn 17291  df-cnp 17292  df-tx 17594  df-hmeo 17787  df-tmd 18102  df-tgp 18103
  Copyright terms: Public domain W3C validator