MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsubdiv Unicode version

Theorem divsubdiv 9476
Description: Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
divsubdiv  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  -  ( B  /  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )

Proof of Theorem divsubdiv
StepHypRef Expression
1 negcl 9052 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 divadddiv 9475 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) ) )
31, 2sylanl2 632 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) ) )
4 simplr 731 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  e.  CC )
5 simprrl 740 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  e.  CC )
6 simprrr 741 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  =/=  0
)
7 divneg 9455 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  -u ( B  /  D )  =  ( -u B  /  D ) )
84, 5, 6, 7syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  -u ( B  /  D )  =  (
-u B  /  D
) )
98oveq2d 5874 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  + 
-u ( B  /  D ) )  =  ( ( A  /  C )  +  (
-u B  /  D
) ) )
10 simpll 730 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  A  e.  CC )
11 simprll 738 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  e.  CC )
12 simprlr 739 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  =/=  0
)
13 divcl 9430 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
1410, 11, 12, 13syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  /  C )  e.  CC )
15 divcl 9430 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( B  /  D )  e.  CC )
164, 5, 6, 15syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  /  D )  e.  CC )
1714, 16negsubd 9163 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  + 
-u ( B  /  D ) )  =  ( ( A  /  C )  -  ( B  /  D ) ) )
189, 17eqtr3d 2317 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( A  /  C )  -  ( B  /  D ) ) )
193, 18eqtr3d 2317 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( A  /  C
)  -  ( B  /  D ) ) )
204, 11mulneg1d 9232 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( -u B  x.  C )  =  -u ( B  x.  C
) )
2120oveq2d 5874 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  x.  D )  +  ( -u B  x.  C ) )  =  ( ( A  x.  D )  +  -u ( B  x.  C
) ) )
2210, 5mulcld 8855 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  x.  D )  e.  CC )
234, 11mulcld 8855 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  e.  CC )
2422, 23negsubd 9163 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  x.  D )  + 
-u ( B  x.  C ) )  =  ( ( A  x.  D )  -  ( B  x.  C )
) )
2521, 24eqtrd 2315 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  x.  D )  +  ( -u B  x.  C ) )  =  ( ( A  x.  D )  -  ( B  x.  C )
) )
2625oveq1d 5873 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )
2719, 26eqtr3d 2317 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  -  ( B  /  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446  (class class class)co 5858   CCcc 8735   0cc0 8737    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423
This theorem is referenced by:  divsubdivd  9581  rplogsumlem1  20633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator