Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djaclN Unicode version

Theorem djaclN 31385
Description: Closure of subspace join for  DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djacl.h  |-  H  =  ( LHyp `  K
)
djacl.t  |-  T  =  ( ( LTrn `  K
) `  W )
djacl.i  |-  I  =  ( ( DIsoA `  K
) `  W )
djacl.j  |-  J  =  ( ( vA `  K ) `  W
)
Assertion
Ref Expression
djaclN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  e. 
ran  I )

Proof of Theorem djaclN
StepHypRef Expression
1 djacl.h . . 3  |-  H  =  ( LHyp `  K
)
2 djacl.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
3 djacl.i . . 3  |-  I  =  ( ( DIsoA `  K
) `  W )
4 eqid 2366 . . 3  |-  ( ( ocA `  K ) `
 W )  =  ( ( ocA `  K
) `  W )
5 djacl.j . . 3  |-  J  =  ( ( vA `  K ) `  W
)
61, 2, 3, 4, 5djavalN 31384 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  =  ( ( ( ocA `  K ) `  W
) `  ( (
( ( ocA `  K
) `  W ) `  X )  i^i  (
( ( ocA `  K
) `  W ) `  Y ) ) ) )
7 inss1 3477 . . . 4  |-  ( ( ( ( ocA `  K
) `  W ) `  X )  i^i  (
( ( ocA `  K
) `  W ) `  Y ) )  C_  ( ( ( ocA `  K ) `  W
) `  X )
81, 2, 3, 4docaclN 31373 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  ( (
( ocA `  K
) `  W ) `  X )  e.  ran  I )
98adantrr 697 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  (
( ( ocA `  K
) `  W ) `  X )  e.  ran  I )
101, 2, 3diaelrnN 31294 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ocA `  K ) `
 W ) `  X )  e.  ran  I )  ->  (
( ( ocA `  K
) `  W ) `  X )  C_  T
)
119, 10syldan 456 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  (
( ( ocA `  K
) `  W ) `  X )  C_  T
)
127, 11syl5ss 3276 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  (
( ( ( ocA `  K ) `  W
) `  X )  i^i  ( ( ( ocA `  K ) `  W
) `  Y )
)  C_  T )
131, 2, 3, 4docaclN 31373 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ocA `  K
) `  W ) `  X )  i^i  (
( ( ocA `  K
) `  W ) `  Y ) )  C_  T )  ->  (
( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  X )  i^i  (
( ( ocA `  K
) `  W ) `  Y ) ) )  e.  ran  I )
1412, 13syldan 456 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  (
( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  X )  i^i  (
( ( ocA `  K
) `  W ) `  Y ) ) )  e.  ran  I )
156, 14eqeltrd 2440 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  T  /\  Y  C_  T
) )  ->  ( X J Y )  e. 
ran  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715    i^i cin 3237    C_ wss 3238   ran crn 4793   ` cfv 5358  (class class class)co 5981   HLchlt 29599   LHypclh 30232   LTrncltrn 30349   DIsoAcdia 31277   ocAcocaN 31368   vAcdjaN 31380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-map 6917  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-llines 29746  df-lplanes 29747  df-lvols 29748  df-lines 29749  df-psubsp 29751  df-pmap 29752  df-padd 30044  df-lhyp 30236  df-laut 30237  df-ldil 30352  df-ltrn 30353  df-trl 30407  df-disoa 31278  df-docaN 31369  df-djaN 31381
  Copyright terms: Public domain W3C validator