MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddsr Unicode version

Theorem dmaddsr 8886
Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddsr  |-  dom  +R  =  ( R.  X.  R. )

Proof of Theorem dmaddsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plr 8862 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
21dmeqi 5004 . . 3  |-  dom  +R  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
3 dmoprabss 6087 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }  C_  ( R.  X.  R. )
42, 3eqsstri 3314 . 2  |-  dom  +R  C_  ( R.  X.  R. )
5 0nsr 8880 . . 3  |-  -.  (/)  e.  R.
6 addclsr 8884 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( x  +R  y
)  e.  R. )
75, 6oprssdm 6160 . 2  |-  ( R. 
X.  R. )  C_  dom  +R
84, 7eqssi 3300 1  |-  dom  +R  =  ( R.  X.  R. )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   <.cop 3753    X. cxp 4809   dom cdm 4811  (class class class)co 6013   {coprab 6014   [cec 6832    +pR cplpr 8665    ~R cer 8667   R.cnr 8668    +R cplr 8672
This theorem is referenced by:  addcomsr  8888  addasssr  8889  distrsr  8892  ltasr  8901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-omul 6658  df-er 6834  df-ec 6836  df-qs 6840  df-ni 8675  df-pli 8676  df-mi 8677  df-lti 8678  df-plpq 8711  df-mpq 8712  df-ltpq 8713  df-enq 8714  df-nq 8715  df-erq 8716  df-plq 8717  df-mq 8718  df-1nq 8719  df-rq 8720  df-ltnq 8721  df-np 8784  df-plp 8786  df-ltp 8788  df-plpr 8858  df-enr 8860  df-nr 8861  df-plr 8862
  Copyright terms: Public domain W3C validator