Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoass Unicode version

Theorem dmcoass 13914
 Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o compa
coafval.a Nat
Assertion
Ref Expression
dmcoass

Proof of Theorem dmcoass
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coafval.o . . . 4 compa
2 coafval.a . . . 4 Nat
3 eqid 2296 . . . 4 comp comp
41, 2, 3coafval 13912 . . 3 coda coda compcoda
54dmmpt2ssx 6205 . 2 coda
6 snssi 3775 . . . . 5
7 ssrab2 3271 . . . . 5 coda
8 xpss12 4808 . . . . 5 coda coda
96, 7, 8sylancl 643 . . . 4 coda
109rgen 2621 . . 3 coda
11 iunss 3959 . . 3 coda coda
1210, 11mpbir 200 . 2 coda
135, 12sstri 3201 1
 Colors of variables: wff set class Syntax hints:   wceq 1632   wcel 1696  wral 2556  crab 2560   wss 3165  csn 3653  cop 3656  cotp 3657  ciun 3921   cxp 4703   cdm 4705  cfv 5271  (class class class)co 5874  c2nd 6137  compcco 13236  cdoma 13868  codaccoda 13869  Natcarw 13870  compaccoa 13902 This theorem is referenced by:  coapm  13919 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-ot 3663  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-arw 13875  df-coa 13904
 Copyright terms: Public domain W3C validator