MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Unicode version

Theorem dmdprd 15252
Description: The domain of definition of the internal direct product, which states that  S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprd.z  |-  Z  =  (Cntz `  G )
dmdprd.0  |-  .0.  =  ( 0g `  G )
dmdprd.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dmdprd  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
Distinct variable groups:    x, y, G    x, I, y    x, S, y    x, V, y
Allowed substitution hints:    K( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem dmdprd
Dummy variables  g  h  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2809 . . . . 5  |-  ( S  e.  { h  |  ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  ->  S  e.  _V )
21a1i 10 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  ->  S  e.  _V ) )
3 fex 5765 . . . . . . 7  |-  ( ( S : I --> (SubGrp `  G )  /\  I  e.  V )  ->  S  e.  _V )
43expcom 424 . . . . . 6  |-  ( I  e.  V  ->  ( S : I --> (SubGrp `  G )  ->  S  e.  _V ) )
54adantr 451 . . . . 5  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S :
I --> (SubGrp `  G )  ->  S  e.  _V )
)
65adantrd 454 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )  ->  S  e.  _V ) )
7 df-sbc 3005 . . . . . 6  |-  ( [. S  /  h ]. (
h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )
8 simpr 447 . . . . . . 7  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  S  e.  _V )
9 simpr 447 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  h  =  S )
109dmeqd 4897 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  h  =  dom  S )
11 simplr 731 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  S  =  I )
1210, 11eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  dom  h  =  I )
139, 12feq12d 5397 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h : dom  h --> (SubGrp `  G )  <->  S :
I --> (SubGrp `  G )
) )
1412difeq1d 3306 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( dom  h  \  { x } )  =  ( I  \  { x } ) )
159fveq1d 5543 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h `  x )  =  ( S `  x ) )
169fveq1d 5543 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h `  y )  =  ( S `  y ) )
1716fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( Z `  ( h `  y ) )  =  ( Z `  ( S `  y )
) )
1815, 17sseq12d 3220 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h `  x
)  C_  ( Z `  ( h `  y
) )  <->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
1914, 18raleqbidv 2761 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( A. y  e.  ( dom  h  \  { x } ) ( h `
 x )  C_  ( Z `  ( h `
 y ) )  <->  A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) ) ) )
209imaeq1d 5027 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h " ( dom  h  \  { x } ) )  =  ( S " ( dom  h  \  { x } ) ) )
2114imaeq2d 5028 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( S " ( dom  h  \  { x } ) )  =  ( S
" ( I  \  { x } ) ) )
2220, 21eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
h " ( dom  h  \  { x } ) )  =  ( S " (
I  \  { x } ) ) )
2322unieqd 3854 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  U. (
h " ( dom  h  \  { x } ) )  = 
U. ( S "
( I  \  {
x } ) ) )
2423fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( K `  U. ( h
" ( dom  h  \  { x } ) ) )  =  ( K `  U. ( S " ( I  \  { x } ) ) ) )
2515, 24ineq12d 3384 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  ( ( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) ) )
2625eqeq1d 2304 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  }  <->  ( ( S `  x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
2719, 26anbi12d 691 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } )  <->  ( A. y  e.  ( I  \  { x } ) ( S `  x
)  C_  ( Z `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) )
2812, 27raleqbidv 2761 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  ( A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } )  <->  A. x  e.  I  ( A. y  e.  ( I  \  { x } ) ( S `  x
)  C_  ( Z `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) )
2913, 28anbi12d 691 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  h  =  S )  ->  (
( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
3029adantlr 695 . . . . . . 7  |-  ( ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e.  _V )  /\  h  =  S )  ->  (
( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
318, 30sbcied 3040 . . . . . 6  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  ( [. S  /  h ]. ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) )  <->  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
327, 31syl5bbr 250 . . . . 5  |-  ( ( ( I  e.  V  /\  dom  S  =  I )  /\  S  e. 
_V )  ->  ( S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
3332ex 423 . . . 4  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
_V  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) ) )
342, 6, 33pm5.21ndd 343 . . 3  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( S  e. 
{ h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) }  <-> 
( S : I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
3534anbi2d 684 . 2  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( ( G  e.  Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )  <->  ( G  e. 
Grp  /\  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) ) )
36 df-br 4040 . . 3  |-  ( G dom DProd  S  <->  <. G ,  S >.  e.  dom DProd  )
37 fvex 5555 . . . . . . . . . . . 12  |-  ( s `
 x )  e. 
_V
3837rgenw 2623 . . . . . . . . . . 11  |-  A. x  e.  dom  s ( s `
 x )  e. 
_V
39 ixpexg 6856 . . . . . . . . . . 11  |-  ( A. x  e.  dom  s ( s `  x )  e.  _V  ->  X_ x  e.  dom  s ( s `
 x )  e. 
_V )
4038, 39ax-mp 8 . . . . . . . . . 10  |-  X_ x  e.  dom  s ( s `
 x )  e. 
_V
4140rabex 4181 . . . . . . . . 9  |-  { h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin }  e.  _V
4241mptex 5762 . . . . . . . 8  |-  ( f  e.  { h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  e. 
_V
4342rnex 4958 . . . . . . 7  |-  ran  (
f  e.  { h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  e. 
_V
4443rgen2w 2624 . . . . . 6  |-  A. g  e.  Grp  A. s  e. 
{ h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) )  e. 
_V
45 df-dprd 15249 . . . . . . 7  |- DProd  =  ( g  e.  Grp , 
s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } 
|->  ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) ) )
4645fmpt2x 6206 . . . . . 6  |-  ( A. g  e.  Grp  A. s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) )  e. 
_V 
<-> DProd  : U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V )
4744, 46mpbi 199 . . . . 5  |- DProd  : U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V
4847fdmi 5410 . . . 4  |-  dom DProd  =  U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } )
4948eleq2i 2360 . . 3  |-  ( <. G ,  S >.  e. 
dom DProd 
<-> 
<. G ,  S >.  e. 
U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) )
50 fveq2 5541 . . . . . . 7  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
51 feq3 5393 . . . . . . 7  |-  ( (SubGrp `  g )  =  (SubGrp `  G )  ->  (
h : dom  h --> (SubGrp `  g )  <->  h : dom  h --> (SubGrp `  G )
) )
5250, 51syl 15 . . . . . 6  |-  ( g  =  G  ->  (
h : dom  h --> (SubGrp `  g )  <->  h : dom  h --> (SubGrp `  G )
) )
53 fveq2 5541 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (Cntz `  g )  =  (Cntz `  G ) )
54 dmdprd.z . . . . . . . . . . . 12  |-  Z  =  (Cntz `  G )
5553, 54syl6eqr 2346 . . . . . . . . . . 11  |-  ( g  =  G  ->  (Cntz `  g )  =  Z )
5655fveq1d 5543 . . . . . . . . . 10  |-  ( g  =  G  ->  (
(Cntz `  g ) `  ( h `  y
) )  =  ( Z `  ( h `
 y ) ) )
5756sseq2d 3219 . . . . . . . . 9  |-  ( g  =  G  ->  (
( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  <->  ( h `  x )  C_  ( Z `  ( h `  y ) ) ) )
5857ralbidv 2576 . . . . . . . 8  |-  ( g  =  G  ->  ( A. y  e.  ( dom  h  \  { x } ) ( h `
 x )  C_  ( (Cntz `  g ) `  ( h `  y
) )  <->  A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) ) ) )
5950fveq2d 5545 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (mrCls `  (SubGrp `  g )
)  =  (mrCls `  (SubGrp `  G ) ) )
60 dmdprd.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
6159, 60syl6eqr 2346 . . . . . . . . . . 11  |-  ( g  =  G  ->  (mrCls `  (SubGrp `  g )
)  =  K )
6261fveq1d 5543 . . . . . . . . . 10  |-  ( g  =  G  ->  (
(mrCls `  (SubGrp `  g
) ) `  U. ( h " ( dom  h  \  { x } ) ) )  =  ( K `  U. ( h " ( dom  h  \  { x } ) ) ) )
6362ineq2d 3383 . . . . . . . . 9  |-  ( g  =  G  ->  (
( h `  x
)  i^i  ( (mrCls `  (SubGrp `  g )
) `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) ) )
64 fveq2 5541 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
65 dmdprd.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  G )
6664, 65syl6eqr 2346 . . . . . . . . . 10  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
6766sneqd 3666 . . . . . . . . 9  |-  ( g  =  G  ->  { ( 0g `  g ) }  =  {  .0.  } )
6863, 67eqeq12d 2310 . . . . . . . 8  |-  ( g  =  G  ->  (
( ( h `  x )  i^i  (
(mrCls `  (SubGrp `  g
) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) }  <->  ( ( h `
 x )  i^i  ( K `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) )
6958, 68anbi12d 691 . . . . . . 7  |-  ( g  =  G  ->  (
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } )  <->  ( A. y  e.  ( dom  h  \  { x }
) ( h `  x )  C_  ( Z `  ( h `  y ) )  /\  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) ) )
7069ralbidv 2576 . . . . . 6  |-  ( g  =  G  ->  ( A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } )  <->  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x }
) ( h `  x )  C_  ( Z `  ( h `  y ) )  /\  ( ( h `  x )  i^i  ( K `  U. ( h
" ( dom  h  \  { x } ) ) ) )  =  {  .0.  } ) ) )
7152, 70anbi12d 691 . . . . 5  |-  ( g  =  G  ->  (
( h : dom  h
--> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) )  <->  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) ) )
7271abbidv 2410 . . . 4  |-  ( g  =  G  ->  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) }  =  { h  |  ( h : dom  h
--> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } )
7372opeliunxp2 4840 . . 3  |-  ( <. G ,  S >.  e. 
U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h
( A. y  e.  ( dom  h  \  { x } ) ( h `  x
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } )  <->  ( G  e. 
Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } ) )
7436, 49, 733bitri 262 . 2  |-  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S  e.  { h  |  ( h : dom  h --> (SubGrp `  G )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( Z `  ( h `  y
) )  /\  (
( h `  x
)  i^i  ( K `  U. ( h "
( dom  h  \  {
x } ) ) ) )  =  {  .0.  } ) ) } ) )
75 3anass 938 . 2  |-  ( ( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )  <->  ( G  e.  Grp  /\  ( S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
7635, 74, 753bitr4g 279 1  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   {crab 2560   _Vcvv 2801   [.wsbc 3004    \ cdif 3162    i^i cin 3164    C_ wss 3165   {csn 3653   <.cop 3656   U.cuni 3843   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874   X_cixp 6833   Fincfn 6879   0gc0g 13416    gsumg cgsu 13417  mrClscmrc 13501   Grpcgrp 14378  SubGrpcsubg 14631  Cntzccntz 14807   DProd cdprd 15247
This theorem is referenced by:  dmdprdd  15253  dprdgrp  15256  dprdf  15257  dprdcntz  15259  dprddisj  15260  dprdres  15279  subgdmdprd  15285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-ixp 6834  df-dprd 15249
  Copyright terms: Public domain W3C validator