MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Unicode version

Theorem dmdprdsplitlem 15272
Description: Lemma for dmdprdsplit 15282. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdsplitlem.0  |-  .0.  =  ( 0g `  G )
dmdprdsplitlem.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
dmdprdsplitlem.1  |-  ( ph  ->  G dom DProd  S )
dmdprdsplitlem.2  |-  ( ph  ->  dom  S  =  I )
dmdprdsplitlem.3  |-  ( ph  ->  A  C_  I )
dmdprdsplitlem.4  |-  ( ph  ->  F  e.  W )
dmdprdsplitlem.5  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  ( S  |`  A ) ) )
Assertion
Ref Expression
dmdprdsplitlem  |-  ( (
ph  /\  X  e.  ( I  \  A ) )  ->  ( F `  X )  =  .0.  )
Distinct variable groups:    .0. , h    h, i, A    h, G, i    h, I, i    h, F    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    W( h, i)    X( h, i)    .0. ( i)

Proof of Theorem dmdprdsplitlem
Dummy variables  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  e.  ( G DProd  ( S  |`  A ) ) )
2 dmdprdsplitlem.1 . . . . . . . 8  |-  ( ph  ->  G dom DProd  S )
3 dmdprdsplitlem.2 . . . . . . . 8  |-  ( ph  ->  dom  S  =  I )
42, 3dprdf2 15242 . . . . . . 7  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
5 dmdprdsplitlem.3 . . . . . . 7  |-  ( ph  ->  A  C_  I )
6 fssres 5408 . . . . . . 7  |-  ( ( S : I --> (SubGrp `  G )  /\  A  C_  I )  ->  ( S  |`  A ) : A --> (SubGrp `  G )
)
74, 5, 6syl2anc 642 . . . . . 6  |-  ( ph  ->  ( S  |`  A ) : A --> (SubGrp `  G ) )
8 fdm 5393 . . . . . 6  |-  ( ( S  |`  A ) : A --> (SubGrp `  G )  ->  dom  ( S  |`  A )  =  A )
9 dmdprdsplitlem.0 . . . . . . 7  |-  .0.  =  ( 0g `  G )
10 eqid 2283 . . . . . . 7  |-  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  =  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }
119, 10eldprd 15239 . . . . . 6  |-  ( dom  ( S  |`  A )  =  A  ->  (
( G  gsumg  F )  e.  ( G DProd  ( S  |`  A ) )  <->  ( G dom DProd  ( S  |`  A )  /\  E. f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  ( G  gsumg  F )  =  ( G 
gsumg  f ) ) ) )
127, 8, 113syl 18 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  F )  e.  ( G DProd  ( S  |`  A ) )  <-> 
( G dom DProd  ( S  |`  A )  /\  E. f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  ( G  gsumg  F )  =  ( G  gsumg  f ) ) ) )
131, 12mpbid 201 . . . 4  |-  ( ph  ->  ( G dom DProd  ( S  |`  A )  /\  E. f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )
1413simprd 449 . . 3  |-  ( ph  ->  E. f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  ( G  gsumg  F )  =  ( G  gsumg  f ) )
1514adantr 451 . 2  |-  ( (
ph  /\  X  e.  ( I  \  A ) )  ->  E. f  e.  { h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  ( G  gsumg  F )  =  ( G 
gsumg  f ) )
16 simprr 733 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( G  gsumg  F )  =  ( G  gsumg  f ) )
1713simpld 445 . . . . . . . . . . . . 13  |-  ( ph  ->  G dom DProd  ( S  |`  A ) )
1817ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  G dom DProd  ( S  |`  A ) )
197, 8syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( S  |`  A )  =  A )
2019ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  dom  ( S  |`  A )  =  A )
21 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  f  e.  { h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin } )
22 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
2310, 18, 20, 21, 22dprdff 15247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  f : A --> ( Base `  G
) )
2423feqmptd 5575 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  f  =  ( n  e.  A  |->  ( f `  n ) ) )
255ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  A  C_  I )
26 resmpt 5000 . . . . . . . . . . . 12  |-  ( A 
C_  I  ->  (
( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) )  |`  A )  =  ( n  e.  A  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) ) )
2725, 26syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) )  |`  A )  =  ( n  e.  A  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) ) )
28 iftrue 3571 . . . . . . . . . . . 12  |-  ( n  e.  A  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  ( f `  n ) )
2928mpteq2ia 4102 . . . . . . . . . . 11  |-  ( n  e.  A  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
)  =  ( n  e.  A  |->  ( f `
 n ) )
3027, 29syl6eq 2331 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) )  |`  A )  =  ( n  e.  A  |->  ( f `  n ) ) )
3124, 30eqtr4d 2318 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  f  =  ( ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
)  |`  A ) )
3231oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( G  gsumg  f )  =  ( G  gsumg  ( ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )  |`  A ) ) )
33 eqid 2283 . . . . . . . . 9  |-  (Cntz `  G )  =  (Cntz `  G )
342ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  G dom DProd  S )
35 dprdgrp 15240 . . . . . . . . . 10  |-  ( G dom DProd  S  ->  G  e. 
Grp )
36 grpmnd 14494 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  Mnd )
3734, 35, 363syl 18 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  G  e.  Mnd )
38 reldmdprd 15235 . . . . . . . . . . . . 13  |-  Rel  dom DProd
3938brrelex2i 4730 . . . . . . . . . . . 12  |-  ( G dom DProd  S  ->  S  e. 
_V )
40 dmexg 4939 . . . . . . . . . . . 12  |-  ( S  e.  _V  ->  dom  S  e.  _V )
412, 39, 403syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  S  e.  _V )
423, 41eqeltrrd 2358 . . . . . . . . . 10  |-  ( ph  ->  I  e.  _V )
4342ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  I  e.  _V )
44 dmdprdsplitlem.w . . . . . . . . . 10  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
453ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  dom  S  =  I )
4618adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  G dom DProd  ( S  |`  A ) )
4720adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  dom  ( S  |`  A )  =  A )
48 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  f  e.  { h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin } )
4910, 46, 47, 48dprdfcl 15248 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I
)  /\  n  e.  A )  ->  (
f `  n )  e.  ( ( S  |`  A ) `  n
) )
50 fvres 5542 . . . . . . . . . . . . . 14  |-  ( n  e.  A  ->  (
( S  |`  A ) `
 n )  =  ( S `  n
) )
5150adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I
)  /\  n  e.  A )  ->  (
( S  |`  A ) `
 n )  =  ( S `  n
) )
5249, 51eleqtrd 2359 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I
)  /\  n  e.  A )  ->  (
f `  n )  e.  ( S `  n
) )
534ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  S : I --> (SubGrp `  G ) )
54 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( S : I --> (SubGrp `  G )  /\  n  e.  I )  ->  ( S `  n )  e.  (SubGrp `  G )
)
5553, 54sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  ( S `  n )  e.  (SubGrp `  G )
)
569subg0cl 14629 . . . . . . . . . . . . . 14  |-  ( ( S `  n )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  n ) )
5755, 56syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  .0.  e.  ( S `  n
) )
5857adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I
)  /\  -.  n  e.  A )  ->  .0.  e.  ( S `  n
) )
5952, 58ifclda 3592 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  I )  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  e.  ( S `  n ) )
6010, 18, 20, 21dprdffi 15249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( `' f " ( _V  \  {  .0.  }
) )  e.  Fin )
61 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  /\  n  e.  A
)  ->  n  e.  A )
62 eldifn 3299 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( I  \ 
( `' f "
( _V  \  {  .0.  } ) ) )  ->  -.  n  e.  ( `' f " ( _V  \  {  .0.  }
) ) )
6362ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  /\  n  e.  A
)  ->  -.  n  e.  ( `' f "
( _V  \  {  .0.  } ) ) )
64 eldif 3162 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( A  \ 
( `' f "
( _V  \  {  .0.  } ) ) )  <-> 
( n  e.  A  /\  -.  n  e.  ( `' f " ( _V  \  {  .0.  }
) ) ) )
6561, 63, 64sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  /\  n  e.  A
)  ->  n  e.  ( A  \  ( `' f " ( _V  \  {  .0.  }
) ) ) )
66 ssid 3197 . . . . . . . . . . . . . . . . . . 19  |-  ( `' f " ( _V 
\  {  .0.  }
) )  C_  ( `' f " ( _V  \  {  .0.  }
) )
6766a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( `' f " ( _V  \  {  .0.  }
) )  C_  ( `' f " ( _V  \  {  .0.  }
) ) )
6823, 67suppssr 5659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( A  \  ( `' f " ( _V  \  {  .0.  }
) ) ) )  ->  ( f `  n )  =  .0.  )
6968adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  /\  n  e.  ( A  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  ->  ( f `  n )  =  .0.  )
7065, 69syldan 456 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  e.  ( I 
\  A ) )  /\  ( f  e. 
{ h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V 
\  {  .0.  }
) ) ) )  /\  n  e.  A
)  ->  ( f `  n )  =  .0.  )
7170ifeq1da 3590 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V  \  {  .0.  }
) ) ) )  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  if ( n  e.  A ,  .0.  ,  .0.  ) )
72 ifid 3597 . . . . . . . . . . . . . 14  |-  if ( n  e.  A ,  .0.  ,  .0.  )  =  .0.
7371, 72syl6eq 2331 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  ( `' f " ( _V  \  {  .0.  }
) ) ) )  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  .0.  )
7473suppss2 6073 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( `' ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' f
" ( _V  \  {  .0.  } ) ) )
75 ssfi 7083 . . . . . . . . . . . 12  |-  ( ( ( `' f "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  C_  ( `' f " ( _V  \  {  .0.  }
) ) )  -> 
( `' ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
7660, 74, 75syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( `' ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
7744, 34, 45, 59, 76dprdwd 15246 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )  e.  W
)
7844, 34, 45, 77, 22dprdff 15247 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) ) : I --> ( Base `  G
) )
7944, 34, 45, 77, 33dprdfcntz 15250 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ran  ( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) )  C_  ( (Cntz `  G ) `  ran  ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) ) ) )
80 eldifn 3299 . . . . . . . . . . . 12  |-  ( n  e.  ( I  \  A )  ->  -.  n  e.  A )
8180adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  A
) )  ->  -.  n  e.  A )
82 iffalse 3572 . . . . . . . . . . 11  |-  ( -.  n  e.  A  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  .0.  )
8381, 82syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  e.  ( I  \  A ) )  /\  ( f  e.  {
h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  /\  n  e.  ( I  \  A
) )  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  .0.  )
8483suppss2 6073 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( `' ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )
" ( _V  \  {  .0.  } ) ) 
C_  A )
8522, 9, 33, 37, 43, 78, 79, 84, 76gsumzres 15194 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( G  gsumg  ( ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) )  |`  A ) )  =  ( G  gsumg  ( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) ) )
8616, 32, 853eqtrd 2319 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) ) )
87 dmdprdsplitlem.4 . . . . . . . . 9  |-  ( ph  ->  F  e.  W )
8887ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  F  e.  W )
899, 44, 34, 45, 88, 77dprdf11 15258 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
( G  gsumg  F )  =  ( G  gsumg  ( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) )  <-> 
F  =  ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
) ) )
9086, 89mpbid 201 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  F  =  ( n  e.  I  |->  if ( n  e.  A ,  ( f `  n ) ,  .0.  ) ) )
9190fveq1d 5527 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( F `  X )  =  ( ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
) `  X )
)
92 eldifi 3298 . . . . . . 7  |-  ( X  e.  ( I  \  A )  ->  X  e.  I )
9392ad2antlr 707 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  X  e.  I )
94 eleq1 2343 . . . . . . . 8  |-  ( n  =  X  ->  (
n  e.  A  <->  X  e.  A ) )
95 fveq2 5525 . . . . . . . 8  |-  ( n  =  X  ->  (
f `  n )  =  ( f `  X ) )
96 eqidd 2284 . . . . . . . 8  |-  ( n  =  X  ->  .0.  =  .0.  )
9794, 95, 96ifbieq12d 3587 . . . . . . 7  |-  ( n  =  X  ->  if ( n  e.  A ,  ( f `  n ) ,  .0.  )  =  if ( X  e.  A , 
( f `  X
) ,  .0.  )
)
98 eqid 2283 . . . . . . 7  |-  ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
)  =  ( n  e.  I  |->  if ( n  e.  A , 
( f `  n
) ,  .0.  )
)
99 fvex 5539 . . . . . . . 8  |-  ( f `
 n )  e. 
_V
100 fvex 5539 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
1019, 100eqeltri 2353 . . . . . . . 8  |-  .0.  e.  _V
10299, 101ifex 3623 . . . . . . 7  |-  if ( n  e.  A , 
( f `  n
) ,  .0.  )  e.  _V
10397, 98, 102fvmpt3i 5605 . . . . . 6  |-  ( X  e.  I  ->  (
( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) `  X )  =  if ( X  e.  A ,  ( f `  X ) ,  .0.  ) )
10493, 103syl 15 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  (
( n  e.  I  |->  if ( n  e.  A ,  ( f `
 n ) ,  .0.  ) ) `  X )  =  if ( X  e.  A ,  ( f `  X ) ,  .0.  ) )
105 eldifn 3299 . . . . . . 7  |-  ( X  e.  ( I  \  A )  ->  -.  X  e.  A )
106105ad2antlr 707 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  -.  X  e.  A )
107 iffalse 3572 . . . . . 6  |-  ( -.  X  e.  A  ->  if ( X  e.  A ,  ( f `  X ) ,  .0.  )  =  .0.  )
108106, 107syl 15 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  if ( X  e.  A ,  ( f `  X ) ,  .0.  )  =  .0.  )
10991, 104, 1083eqtrd 2319 . . . 4  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  (
f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  /\  ( G  gsumg  F )  =  ( G  gsumg  f ) ) )  ->  ( F `  X )  =  .0.  )
110109expr 598 . . 3  |-  ( ( ( ph  /\  X  e.  ( I  \  A
) )  /\  f  e.  { h  e.  X_ i  e.  A  (
( S  |`  A ) `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin } )  ->  (
( G  gsumg  F )  =  ( G  gsumg  f )  ->  ( F `  X )  =  .0.  ) )
111110rexlimdva 2667 . 2  |-  ( (
ph  /\  X  e.  ( I  \  A ) )  ->  ( E. f  e.  { h  e.  X_ i  e.  A  ( ( S  |`  A ) `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  ( G  gsumg  F )  =  ( G  gsumg  f )  ->  ( F `  X )  =  .0.  ) )
11215, 111mpd 14 1  |-  ( (
ph  /\  X  e.  ( I  \  A ) )  ->  ( F `  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ifcif 3565   {csn 3640   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   dom cdm 4689    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   Basecbs 13148   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361   Grpcgrp 14362  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprddisj2  15274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-gim 14723  df-cntz 14793  df-oppg 14819  df-cmn 15091  df-dprd 15233
  Copyright terms: Public domain W3C validator