MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiin Unicode version

Theorem dmiin 5053
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 4064 . . . 4  |-  F/_ x |^|_ x  e.  A  B
21nfdm 5051 . . 3  |-  F/_ x dom  |^|_ x  e.  A  B
32ssiinf 4081 . 2  |-  ( dom  |^|_ x  e.  A  B  C_ 
|^|_ x  e.  A  dom  B  <->  A. x  e.  A  dom  |^|_ x  e.  A  B  C_  dom  B )
4 iinss2 4084 . . 3  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
5 dmss 5009 . . 3  |-  ( |^|_ x  e.  A  B  C_  B  ->  dom  |^|_ x  e.  A  B  C_  dom  B )
64, 5syl 16 . 2  |-  ( x  e.  A  ->  dom  |^|_
x  e.  A  B  C_ 
dom  B )
73, 6mprgbir 2719 1  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    e. wcel 1717    C_ wss 3263   |^|_ciin 4036   dom cdm 4818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-iin 4038  df-br 4154  df-dm 4828
  Copyright terms: Public domain W3C validator