MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt2ssx Unicode version

Theorem dmmpt2ssx 6205
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpt2x.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpt2ssx  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Distinct variable groups:    x, y, A    y, B
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem dmmpt2ssx
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2432 . . . . 5  |-  F/_ u B
2 nfcsb1v 3126 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
3 nfcv 2432 . . . . 5  |-  F/_ u C
4 nfcv 2432 . . . . 5  |-  F/_ v C
5 nfcsb1v 3126 . . . . 5  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
6 nfcv 2432 . . . . . 6  |-  F/_ y
u
7 nfcsb1v 3126 . . . . . 6  |-  F/_ y [_ v  /  y ]_ C
86, 7nfcsb 3128 . . . . 5  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
9 csbeq1a 3102 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
10 csbeq1a 3102 . . . . . 6  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
11 csbeq1a 3102 . . . . . 6  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
1210, 11sylan9eqr 2350 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
131, 2, 3, 4, 5, 8, 9, 12cbvmpt2x 5940 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
14 fmpt2x.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 2804 . . . . . . . 8  |-  u  e. 
_V
16 vex 2804 . . . . . . . 8  |-  v  e. 
_V
1715, 16op1std 6146 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( 1st `  t
)  =  u )
1817csbeq1d 3100 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
1915, 16op2ndd 6147 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( 2nd `  t
)  =  v )
2019csbeq1d 3100 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 2nd `  t
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
2120csbeq2dv 3119 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2218, 21eqtrd 2328 . . . . 5  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2322mpt2mptx 5954 . . . 4  |-  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
2413, 14, 233eqtr4i 2326 . . 3  |-  F  =  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
2524dmmptss 5185 . 2  |-  dom  F  C_ 
U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )
26 nfcv 2432 . . 3  |-  F/_ u
( { x }  X.  B )
27 nfcv 2432 . . . 4  |-  F/_ x { u }
2827, 2nfxp 4731 . . 3  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
29 sneq 3664 . . . 4  |-  ( x  =  u  ->  { x }  =  { u } )
3029, 9xpeq12d 4730 . . 3  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
3126, 28, 30cbviun 3955 . 2  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
3225, 31sseqtr4i 3224 1  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   [_csb 3094    C_ wss 3165   {csn 3653   <.cop 3656   U_ciun 3921    e. cmpt 4093    X. cxp 4703   dom cdm 4705   ` cfv 5271    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137
This theorem is referenced by:  mpt2exxg  6211  dmcoass  13914  dvbsss  19268  perfdvf  19269  mpt2xopn0yelv  28195  mpt2xopxnop0  28197  nbgrael  28275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator