Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncrng Unicode version

Theorem dmncrng 26357
Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
dmncrng  |-  ( R  e.  Dmn  ->  R  e. CRingOps )

Proof of Theorem dmncrng
StepHypRef Expression
1 isdmn2 26356 . 2  |-  ( R  e.  Dmn  <->  ( R  e.  PrRing  /\  R  e. CRingOps ) )
21simprbi 451 1  |-  ( R  e.  Dmn  ->  R  e. CRingOps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717  CRingOpsccring 26296   PrRingcprrng 26347   Dmncdmn 26348
This theorem is referenced by:  dmnrngo  26358  dmncan2  26378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-iota 5358  df-fv 5402  df-crngo 26297  df-prrngo 26349  df-dmn 26350
  Copyright terms: Public domain W3C validator