Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab3 Structured version   Unicode version

Theorem dmopab3 5074
 Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2702 . 2
2 pm4.71 612 . . 3
32albii 1575 . 2
4 dmopab 5072 . . . . 5
5 19.42v 1928 . . . . . 6
65abbii 2547 . . . . 5
74, 6eqtri 2455 . . . 4
87eqeq1i 2442 . . 3
9 eqcom 2437 . . 3
10 abeq2 2540 . . 3
118, 9, 103bitr2ri 266 . 2
121, 3, 113bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550   wceq 1652   wcel 1725  cab 2421  wral 2697  copab 4257   cdm 4870 This theorem is referenced by:  dmxp  5080  fnopabg  5560 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-dm 4880
 Copyright terms: Public domain W3C validator