MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab3 Unicode version

Theorem dmopab3 4907
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2561 . 2  |-  ( A. x  e.  A  E. y ph  <->  A. x ( x  e.  A  ->  E. y ph ) )
2 pm4.71 611 . . 3  |-  ( ( x  e.  A  ->  E. y ph )  <->  ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
32albii 1556 . 2  |-  ( A. x ( x  e.  A  ->  E. y ph )  <->  A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
4 dmopab 4905 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  E. y ( x  e.  A  /\  ph ) }
5 19.42v 1858 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  E. y ph ) )
65abbii 2408 . . . . 5  |-  { x  |  E. y ( x  e.  A  /\  ph ) }  =  {
x  |  ( x  e.  A  /\  E. y ph ) }
74, 6eqtri 2316 . . . 4  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  A  /\  E. y ph ) }
87eqeq1i 2303 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  =  A  <->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
9 eqcom 2298 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
10 abeq2 2401 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<-> 
A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
118, 9, 103bitr2ri 265 . 2  |-  ( A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) )  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
121, 3, 113bitri 262 1  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   {copab 4092   dom cdm 4705
This theorem is referenced by:  dmxp  4913  fnopabg  5383  domncnt  25385  ranncnt  25386  bosser  26270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-dm 4715
  Copyright terms: Public domain W3C validator