MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmoprab Unicode version

Theorem dmoprab 5928
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
dmoprab  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5895 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21dmeqi 4880 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  dom  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 dmopab 4889 . 2  |-  dom  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1818 . . . . 5  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. z ( w  =  <. x ,  y >.  /\  ph ) )
5 19.42v 1846 . . . . . 6  |-  ( E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  ( w  =  <. x ,  y
>.  /\  E. z ph ) )
652exbii 1570 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
74, 6bitri 240 . . . 4  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
87abbii 2395 . . 3  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z ph ) }
9 df-opab 4078 . . 3  |-  { <. x ,  y >.  |  E. z ph }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph ) }
108, 9eqtr4i 2306 . 2  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { <. x ,  y
>.  |  E. z ph }
112, 3, 103eqtri 2307 1  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623   {cab 2269   <.cop 3643   {copab 4076   dom cdm 4689   {coprab 5859
This theorem is referenced by:  dmoprabss  5929  reldmoprab  5932  fnoprabg  5945  1st2val  6145  2nd2val  6146  linedegen  24766  dmoprabss6  25035  cmppar2  25972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-dm 4699  df-oprab 5862
  Copyright terms: Public domain W3C validator