MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmoprabss Unicode version

Theorem dmoprabss 5945
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Distinct variable groups:    x, y,
z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 5944 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 19.42v 1858 . . . 4  |-  ( E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) )
32opabbii 4099 . . 3  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) }
4 opabssxp 4778 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  E. z ph ) }  C_  ( A  X.  B )
53, 4eqsstri 3221 . 2  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
61, 5eqsstri 3221 1  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    e. wcel 1696    C_ wss 3165   {copab 4092    X. cxp 4703   dom cdm 4705   {coprab 5875
This theorem is referenced by:  oprabexd  5976  oprabex  5977  elmpt2cl  6077  dmaddsr  8723  dmmulsr  8724  axaddf  8783  axmulf  8784  dmoprabsss  25136  prismorcsetlem  26015  prismorcset  26017  prismorcsetlemc  26020  mpt2ndm0  28204  trlonprop  28341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-dm 4715  df-oprab 5878
  Copyright terms: Public domain W3C validator