MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmprop Unicode version

Theorem dmprop 5148
Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
Assertion
Ref Expression
dmprop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }

Proof of Theorem dmprop
StepHypRef Expression
1 dmsnop.1 . 2  |-  B  e. 
_V
2 dmprop.1 . 2  |-  D  e. 
_V
3 dmpropg 5146 . 2  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
41, 2, 3mp2an 653 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   {cpr 3641   <.cop 3643   dom cdm 4689
This theorem is referenced by:  dmtpop  5149  funtp  5303  fpr  5704  hashfun  11389  ex-dm  20826  repfuntw  25160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-dm 4699
  Copyright terms: Public domain W3C validator