MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopg Unicode version

Theorem dmsnopg 5144
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)

Proof of Theorem dmsnopg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . 6  |-  x  e. 
_V
2 vex 2791 . . . . . 6  |-  y  e. 
_V
31, 2opth1 4244 . . . . 5  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  x  =  A )
43exlimiv 1666 . . . 4  |-  ( E. y <. x ,  y
>.  =  <. A ,  B >.  ->  x  =  A )
5 opeq1 3796 . . . . 5  |-  ( x  =  A  ->  <. x ,  B >.  =  <. A ,  B >. )
6 opeq2 3797 . . . . . . 7  |-  ( y  =  B  ->  <. x ,  y >.  =  <. x ,  B >. )
76eqeq1d 2291 . . . . . 6  |-  ( y  =  B  ->  ( <. x ,  y >.  =  <. A ,  B >.  <->  <. x ,  B >.  = 
<. A ,  B >. ) )
87spcegv 2869 . . . . 5  |-  ( B  e.  V  ->  ( <. x ,  B >.  = 
<. A ,  B >.  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
95, 8syl5 28 . . . 4  |-  ( B  e.  V  ->  (
x  =  A  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
104, 9impbid2 195 . . 3  |-  ( B  e.  V  ->  ( E. y <. x ,  y
>.  =  <. A ,  B >. 
<->  x  =  A ) )
111eldm2 4877 . . . 4  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  e.  { <. A ,  B >. } )
12 opex 4237 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsnc 3663 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
1413exbii 1569 . . . 4  |-  ( E. y <. x ,  y
>.  e.  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
1511, 14bitri 240 . . 3  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
16 elsn 3655 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
1710, 15, 163bitr4g 279 . 2  |-  ( B  e.  V  ->  (
x  e.  dom  { <. A ,  B >. }  <-> 
x  e.  { A } ) )
1817eqrdv 2281 1  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1528    = wceq 1623    e. wcel 1684   {csn 3640   <.cop 3643   dom cdm 4689
This theorem is referenced by:  dmsnopss  5145  dmpropg  5146  dmsnop  5147  rnsnopg  5152  fnsng  5299  funprg  5301  setsval  13172  eupap1  23900  bnj96  28897  bnj535  28922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-dm 4699
  Copyright terms: Public domain W3C validator