MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Unicode version

Theorem dmtpop 5349
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
dmtpop.1  |-  F  e. 
_V
Assertion
Ref Expression
dmtpop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 3824 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  =  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )
21dmeqi 5074 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  dom  ( {
<. A ,  B >. , 
<. C ,  D >. }  u.  { <. E ,  F >. } )
3 dmun 5079 . . 3  |-  dom  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )  =  ( dom  { <. A ,  B >. , 
<. C ,  D >. }  u.  dom  { <. E ,  F >. } )
4 dmsnop.1 . . . . 5  |-  B  e. 
_V
5 dmprop.1 . . . . 5  |-  D  e. 
_V
64, 5dmprop 5348 . . . 4  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
7 dmtpop.1 . . . . 5  |-  F  e. 
_V
87dmsnop 5347 . . . 4  |-  dom  { <. E ,  F >. }  =  { E }
96, 8uneq12i 3501 . . 3  |-  ( dom 
{ <. A ,  B >. ,  <. C ,  D >. }  u.  dom  { <. E ,  F >. } )  =  ( { A ,  C }  u.  { E } )
102, 3, 93eqtri 2462 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  ( { A ,  C }  u.  { E } )
11 df-tp 3824 . 2  |-  { A ,  C ,  E }  =  ( { A ,  C }  u.  { E } )
1210, 11eqtr4i 2461 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   _Vcvv 2958    u. cun 3320   {csn 3816   {cpr 3817   {ctp 3818   <.cop 3819   dom cdm 4881
This theorem is referenced by:  fntp  5510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-br 4216  df-dm 4891
  Copyright terms: Public domain W3C validator