MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpos Unicode version

Theorem dmtpos 6246
Description: The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )

Proof of Theorem dmtpos
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4717 . . . . 5  |-  -.  (/)  e.  ( _V  X.  _V )
2 ssel 3174 . . . . 5  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  ( (/) 
e.  dom  F  ->  (/)  e.  ( _V  X.  _V ) ) )
31, 2mtoi 169 . . . 4  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  -.  (/) 
e.  dom  F )
4 df-rel 4696 . . . 4  |-  ( Rel 
dom  F  <->  dom  F  C_  ( _V  X.  _V ) )
5 reldmtpos 6242 . . . 4  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
63, 4, 53imtr4i 257 . . 3  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
7 relcnv 5051 . . 3  |-  Rel  `' dom  F
86, 7jctir 524 . 2  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  /\  Rel  `' dom  F ) )
9 vex 2791 . . . . . 6  |-  z  e. 
_V
10 brtpos 6243 . . . . . 6  |-  ( z  e.  _V  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
119, 10mp1i 11 . . . . 5  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
1211exbidv 1612 . . . 4  |-  ( Rel 
dom  F  ->  ( E. z <. x ,  y
>.tpos  F z  <->  E. z <. y ,  x >. F z ) )
13 opex 4237 . . . . 5  |-  <. x ,  y >.  e.  _V
1413eldm 4876 . . . 4  |-  ( <.
x ,  y >.  e.  dom tpos  F  <->  E. z <. x ,  y >.tpos  F z )
15 vex 2791 . . . . . 6  |-  x  e. 
_V
16 vex 2791 . . . . . 6  |-  y  e. 
_V
1715, 16opelcnv 4863 . . . . 5  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  <. y ,  x >.  e.  dom  F )
18 opex 4237 . . . . . 6  |-  <. y ,  x >.  e.  _V
1918eldm 4876 . . . . 5  |-  ( <.
y ,  x >.  e. 
dom  F  <->  E. z <. y ,  x >. F z )
2017, 19bitri 240 . . . 4  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  E. z <. y ,  x >. F z )
2112, 14, 203bitr4g 279 . . 3  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.  e.  dom tpos  F  <->  <. x ,  y
>.  e.  `' dom  F
) )
2221eqrelrdv2 4786 . 2  |-  ( ( ( Rel  dom tpos  F  /\  Rel  `' dom  F )  /\  Rel  dom  F )  ->  dom tpos  F  =  `' dom  F )
238, 22mpancom 650 1  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023    X. cxp 4687   `'ccnv 4688   dom cdm 4689   Rel wrel 4694  tpos ctpos 6233
This theorem is referenced by:  rntpos  6247  dftpos2  6251  dftpos3  6252  tposfn2  6256  dualalg  25782  dualded  25783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6234
  Copyright terms: Public domain W3C validator