MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmun Unicode version

Theorem dmun 4885
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )

Proof of Theorem dmun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3435 . . 3  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  ( E. x  y A x  \/  E. x  y B x ) }
2 brun 4069 . . . . . 6  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
32exbii 1569 . . . . 5  |-  ( E. x  y ( A  u.  B ) x  <->  E. x ( y A x  \/  y B x ) )
4 19.43 1592 . . . . 5  |-  ( E. x ( y A x  \/  y B x )  <->  ( E. x  y A x  \/  E. x  y B x ) )
53, 4bitr2i 241 . . . 4  |-  ( ( E. x  y A x  \/  E. x  y B x )  <->  E. x  y ( A  u.  B ) x )
65abbii 2395 . . 3  |-  { y  |  ( E. x  y A x  \/  E. x  y B x ) }  =  {
y  |  E. x  y ( A  u.  B ) x }
71, 6eqtri 2303 . 2  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  E. x  y ( A  u.  B ) x }
8 df-dm 4699 . . 3  |-  dom  A  =  { y  |  E. x  y A x }
9 df-dm 4699 . . 3  |-  dom  B  =  { y  |  E. x  y B x }
108, 9uneq12i 3327 . 2  |-  ( dom 
A  u.  dom  B
)  =  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )
11 df-dm 4699 . 2  |-  dom  ( A  u.  B )  =  { y  |  E. x  y ( A  u.  B ) x }
127, 10, 113eqtr4ri 2314 1  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 357   E.wex 1528    = wceq 1623   {cab 2269    u. cun 3150   class class class wbr 4023   dom cdm 4689
This theorem is referenced by:  rnun  5089  dmpropg  5146  dmtpop  5149  fnun  5350  tfrlem10  6403  sbthlem5  6975  fodomr  7012  axdc3lem4  8079  hashfun  11389  strlemor1  13235  strleun  13238  xpsfrnel2  13467  wfrlem13  24268  wfrlem16  24271  fixun  24449  mvdco  27388  s4dom  28092  bnj1416  29069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-br 4024  df-dm 4699
  Copyright terms: Public domain W3C validator