Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpin Structured version   Unicode version

Theorem dmxpin 5091
 Description: The domain of the intersection of two square cross products. Unlike dmin 5078, equality holds. (Contributed by NM, 29-Jan-2008.)
Assertion
Ref Expression
dmxpin

Proof of Theorem dmxpin
StepHypRef Expression
1 inxp 5008 . . 3
21dmeqi 5072 . 2
3 dmxpid 5090 . 2
42, 3eqtri 2457 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   cin 3320   cxp 4877   cdm 4879 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-br 4214  df-opab 4268  df-xp 4885  df-rel 4886  df-dm 4889
 Copyright terms: Public domain W3C validator