Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca3N Unicode version

Theorem doca3N 31939
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h  |-  H  =  ( LHyp `  K
)
doca2.i  |-  I  =  ( ( DIsoA `  K
) `  W )
doca2.n  |-  ._|_  =  ( ( ocA `  K
) `  W )
Assertion
Ref Expression
doca3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )

Proof of Theorem doca3N
StepHypRef Expression
1 doca2.h . . . 4  |-  H  =  ( LHyp `  K
)
2 doca2.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
31, 2diacnvclN 31863 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  ( `' I `  X )  e.  dom  I )
4 doca2.n . . . 4  |-  ._|_  =  ( ( ocA `  K
) `  W )
51, 2, 4doca2N 31938 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( `' I `  X )  e.  dom  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  ( I `  ( `' I `  X ) ) )
63, 5syldan 456 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  ( I `  ( `' I `  X ) ) )
71, 2diaf11N 31861 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
8 f1ocnvfv2 5809 . . . . 5  |-  ( ( I : dom  I -1-1-onto-> ran  I  /\  X  e.  ran  I )  ->  (
I `  ( `' I `  X )
)  =  X )
97, 8sylan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (
I `  ( `' I `  X )
)  =  X )
109fveq2d 5545 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  ( I `  ( `' I `  X ) ) )  =  ( 
._|_  `  X ) )
1110fveq2d 5545 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  (  ._|_  `  (  ._|_  `  X ) ) )
126, 11, 93eqtr3d 2336 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   `'ccnv 4704   dom cdm 4705   ran crn 4706   -1-1-onto->wf1o 5270   ` cfv 5271   HLchlt 30162   LHypclh 30795   DIsoAcdia 31840   ocAcocaN 31931
This theorem is referenced by:  diarnN  31941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-cmtN 29989  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-disoa 31841  df-docaN 31932
  Copyright terms: Public domain W3C validator