Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Unicode version

Theorem dochocss 31532
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h  |-  H  =  ( LHyp `  K
)
dochss.u  |-  U  =  ( ( DVecH `  K
) `  W )
dochss.v  |-  V  =  ( Base `  U
)
dochss.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
Assertion
Ref Expression
dochocss  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  X  C_  (  ._|_  `  (  ._|_  `  X
) ) )

Proof of Theorem dochocss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssintub 4003 . 2  |-  X  C_  |^|
{ z  e.  ran  ( ( DIsoH `  K
) `  W )  |  X  C_  z }
2 dochss.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 eqid 2380 . . . . 5  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
4 dochss.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
5 dochss.v . . . . 5  |-  V  =  ( Base `  U
)
6 dochss.o . . . . 5  |-  ._|_  =  ( ( ocH `  K
) `  W )
72, 3, 4, 5, 6dochcl 31519 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  (  ._|_  `  X )  e.  ran  ( ( DIsoH `  K
) `  W )
)
8 eqid 2380 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
98, 2, 3, 6dochvalr 31523 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  X
)  e.  ran  (
( DIsoH `  K ) `  W ) )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  ( ( ( DIsoH `  K ) `  W
) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  (  ._|_  `  X ) ) ) ) )
107, 9syldan 457 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  (  ._|_  `  (  ._|_  `  X ) )  =  ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  (  ._|_  `  X
) ) ) ) )
118, 2, 3, 4, 5, 6dochval2 31518 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  (  ._|_  `  X )  =  ( ( ( DIsoH `  K
) `  W ) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) ) )
1211fveq2d 5665 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( `' ( ( DIsoH `  K
) `  W ) `  (  ._|_  `  X
) )  =  ( `' ( ( DIsoH `  K ) `  W
) `  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) ) ) ) )
13 eqid 2380 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
14 eqid 2380 . . . . . . . . . . 11  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
1513, 2, 3, 4, 14dihf11 31433 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( DIsoH `  K
) `  W ) : ( Base `  K
) -1-1-> ( LSubSp `  U
) )
1615adantr 452 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( DIsoH `  K ) `  W ) : (
Base `  K ) -1-1-> ( LSubSp `  U )
)
17 f1f1orn 5618 . . . . . . . . 9  |-  ( ( ( DIsoH `  K ) `  W ) : (
Base `  K ) -1-1-> ( LSubSp `  U )  ->  ( ( DIsoH `  K
) `  W ) : ( Base `  K
)
-1-1-onto-> ran  ( ( DIsoH `  K
) `  W )
)
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( DIsoH `  K ) `  W ) : (
Base `  K ) -1-1-onto-> ran  ( ( DIsoH `  K
) `  W )
)
19 hlop 29528 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
2019ad2antrr 707 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  K  e.  OP )
21 simpl 444 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( K  e.  HL  /\  W  e.  H ) )
22 ssrab2 3364 . . . . . . . . . . . 12  |-  { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z }  C_  ran  ( ( DIsoH `  K
) `  W )
2322a1i 11 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  { z  e.  ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  C_  ran  (
( DIsoH `  K ) `  W ) )
24 eqid 2380 . . . . . . . . . . . . . . . 16  |-  ( 1.
`  K )  =  ( 1. `  K
)
2524, 2, 3, 4, 5dih1 31452 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( DIsoH `  K ) `  W
) `  ( 1. `  K ) )  =  V )
2625adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( (
( DIsoH `  K ) `  W ) `  ( 1. `  K ) )  =  V )
27 f1fn 5573 . . . . . . . . . . . . . . . 16  |-  ( ( ( DIsoH `  K ) `  W ) : (
Base `  K ) -1-1-> ( LSubSp `  U )  ->  ( ( DIsoH `  K
) `  W )  Fn  ( Base `  K
) )
2816, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( DIsoH `  K ) `  W )  Fn  ( Base `  K ) )
2913, 24op1cl 29351 . . . . . . . . . . . . . . . 16  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
3020, 29syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( 1. `  K )  e.  (
Base `  K )
)
31 fnfvelrn 5799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( DIsoH `  K
) `  W )  Fn  ( Base `  K
)  /\  ( 1. `  K )  e.  (
Base `  K )
)  ->  ( (
( DIsoH `  K ) `  W ) `  ( 1. `  K ) )  e.  ran  ( (
DIsoH `  K ) `  W ) )
3228, 30, 31syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( (
( DIsoH `  K ) `  W ) `  ( 1. `  K ) )  e.  ran  ( (
DIsoH `  K ) `  W ) )
3326, 32eqeltrrd 2455 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  V  e.  ran  ( ( DIsoH `  K
) `  W )
)
34 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  X  C_  V
)
35 sseq2 3306 . . . . . . . . . . . . . 14  |-  ( z  =  V  ->  ( X  C_  z  <->  X  C_  V
) )
3635elrab 3028 . . . . . . . . . . . . 13  |-  ( V  e.  { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  <->  ( V  e. 
ran  ( ( DIsoH `  K ) `  W
)  /\  X  C_  V
) )
3733, 34, 36sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  V  e.  { z  e.  ran  (
( DIsoH `  K ) `  W )  |  X  C_  z } )
38 ne0i 3570 . . . . . . . . . . . 12  |-  ( V  e.  { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  ->  { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z }  =/=  (/) )
3937, 38syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  { z  e.  ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  =/=  (/) )
402, 3dihintcl 31510 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z }  C_  ran  ( ( DIsoH `  K
) `  W )  /\  { z  e.  ran  ( ( DIsoH `  K
) `  W )  |  X  C_  z }  =/=  (/) ) )  ->  |^| { z  e.  ran  ( ( DIsoH `  K
) `  W )  |  X  C_  z }  e.  ran  ( (
DIsoH `  K ) `  W ) )
4121, 23, 39, 40syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z }  e.  ran  ( ( DIsoH `  K
) `  W )
)
42 f1ocnvdm 5950 . . . . . . . . . 10  |-  ( ( ( ( DIsoH `  K
) `  W ) : ( Base `  K
)
-1-1-onto-> ran  ( ( DIsoH `  K
) `  W )  /\  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  e.  ran  ( ( DIsoH `  K
) `  W )
)  ->  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } )  e.  (
Base `  K )
)
4318, 41, 42syl2anc 643 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } )  e.  (
Base `  K )
)
4413, 8opoccl 29360 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) )  e.  ( Base `  K
) )
4520, 43, 44syl2anc 643 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) )  e.  ( Base `  K
) )
46 f1ocnvfv1 5946 . . . . . . . 8  |-  ( ( ( ( DIsoH `  K
) `  W ) : ( Base `  K
)
-1-1-onto-> ran  ( ( DIsoH `  K
) `  W )  /\  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) )  e.  ( Base `  K
) )  ->  ( `' ( ( DIsoH `  K ) `  W
) `  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) ) ) )  =  ( ( oc `  K ) `
 ( `' ( ( DIsoH `  K ) `  W ) `  |^| { z  e.  ran  (
( DIsoH `  K ) `  W )  |  X  C_  z } ) ) )
4718, 45, 46syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( `' ( ( DIsoH `  K
) `  W ) `  ( ( ( DIsoH `  K ) `  W
) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) ) )  =  ( ( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) ) )
4812, 47eqtrd 2412 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( `' ( ( DIsoH `  K
) `  W ) `  (  ._|_  `  X
) )  =  ( ( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) ) )
4948fveq2d 5665 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  (  ._|_  `  X ) ) )  =  ( ( oc
`  K ) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) ) )
5013, 8opococ 29361 . . . . . 6  |-  ( ( K  e.  OP  /\  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) )  =  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) )
5120, 43, 50syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( oc `  K ) `  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) )  =  ( `' ( ( DIsoH `  K
) `  W ) `  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z } ) )
5249, 51eqtrd 2412 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( ( oc `  K ) `  ( `' ( ( DIsoH `  K ) `  W
) `  (  ._|_  `  X ) ) )  =  ( `' ( ( DIsoH `  K ) `  W ) `  |^| { z  e.  ran  (
( DIsoH `  K ) `  W )  |  X  C_  z } ) )
5352fveq2d 5665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( `' ( ( DIsoH `  K
) `  W ) `  (  ._|_  `  X
) ) ) )  =  ( ( (
DIsoH `  K ) `  W ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) ) )
54 f1ocnvfv2 5947 . . . 4  |-  ( ( ( ( DIsoH `  K
) `  W ) : ( Base `  K
)
-1-1-onto-> ran  ( ( DIsoH `  K
) `  W )  /\  |^| { z  e. 
ran  ( ( DIsoH `  K ) `  W
)  |  X  C_  z }  e.  ran  ( ( DIsoH `  K
) `  W )
)  ->  ( (
( DIsoH `  K ) `  W ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) )  =  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } )
5518, 41, 54syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  ( (
( DIsoH `  K ) `  W ) `  ( `' ( ( DIsoH `  K ) `  W
) `  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } ) )  =  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z } )
5610, 53, 553eqtrrd 2417 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  |^| { z  e.  ran  ( (
DIsoH `  K ) `  W )  |  X  C_  z }  =  ( 
._|_  `  (  ._|_  `  X
) ) )
571, 56syl5sseq 3332 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  X  C_  (  ._|_  `  (  ._|_  `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   {crab 2646    C_ wss 3256   (/)c0 3564   |^|cint 3985   `'ccnv 4810   ran crn 4812    Fn wfn 5382   -1-1->wf1 5384   -1-1-onto->wf1o 5386   ` cfv 5387   Basecbs 13389   occoc 13457   1.cp1 14387   LSubSpclss 15928   OPcops 29338   HLchlt 29516   LHypclh 30149   DVecHcdvh 31244   DIsoHcdih 31394   ocHcoch 31513
This theorem is referenced by:  dochsscl  31534  dochsat  31549  dochshpncl  31550  dochlkr  31551  dochdmj1  31556  dochnoncon  31557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-undef 6472  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-0g 13647  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-mnd 14610  df-submnd 14659  df-grp 14732  df-minusg 14733  df-sbg 14734  df-subg 14861  df-cntz 15036  df-lsm 15190  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-drng 15757  df-lmod 15872  df-lss 15929  df-lsp 15968  df-lvec 16095  df-lsatoms 29142  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324  df-tendo 30920  df-edring 30922  df-disoa 31195  df-dvech 31245  df-dib 31305  df-dic 31339  df-dih 31395  df-doch 31514
  Copyright terms: Public domain W3C validator