MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Unicode version

Theorem dom0 7198
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0  |-  ( A  ~<_  (/) 
<->  A  =  (/) )

Proof of Theorem dom0
StepHypRef Expression
1 reldom 7078 . . . . 5  |-  Rel  ~<_
21brrelexi 4881 . . . 4  |-  ( A  ~<_  (/)  ->  A  e.  _V )
3 0domg 7197 . . . 4  |-  ( A  e.  _V  ->  (/)  ~<_  A )
42, 3syl 16 . . 3  |-  ( A  ~<_  (/)  ->  (/)  ~<_  A )
54pm4.71i 614 . 2  |-  ( A  ~<_  (/) 
<->  ( A  ~<_  (/)  /\  (/)  ~<_  A ) )
6 sbthb 7191 . 2  |-  ( ( A  ~<_  (/)  /\  (/)  ~<_  A )  <-> 
A  ~~  (/) )
7 en0 7133 . 2  |-  ( A 
~~  (/)  <->  A  =  (/) )
85, 6, 73bitri 263 1  |-  ( A  ~<_  (/) 
<->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2920   (/)c0 3592   class class class wbr 4176    ~~ cen 7069    ~<_ cdom 7070
This theorem is referenced by:  pwcdadom  8056  fin1a2lem11  8250  cfpwsdom  8419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-er 6868  df-en 7073  df-dom 7074
  Copyright terms: Public domain W3C validator