Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2d Structured version   Unicode version

Theorem dom2d 7148
 Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1
dom2d.2
Assertion
Ref Expression
dom2d
Distinct variable groups:   ,,   ,,   ,   ,   ,,
Allowed substitution hints:   ()   ()   (,)

Proof of Theorem dom2d
StepHypRef Expression
1 dom2d.1 . . 3
2 dom2d.2 . . 3
31, 2dom2lem 7147 . 2
4 f1domg 7127 . 2
53, 4syl5com 28 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725   class class class wbr 4212   cmpt 4266  wf1 5451   cdom 7107 This theorem is referenced by:  dom2  7150  fineqvlem  7323  fseqdom  7907  fin1a2lem9  8288  iundom2g  8415  canthwe  8526  prmreclem2  13285  prmreclem3  13286  sylow1lem4  15235  aannenlem1  20245  derangenlem  24857  fphpd  26877  pellexlem3  26894  unxpwdom3  27233 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-dom 7111
 Copyright terms: Public domain W3C validator