Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domc Unicode version

Theorem domc 25765
Description: The 1st "axiom" of a category:  ( dom_ `  T
) is a mapping from the morphisms of  T to the objects of  T. (Contributed by FL, 2-Jan-2008.)
Hypotheses
Ref Expression
cat.1  |-  M  =  dom  D
cat.3  |-  D  =  ( dom_ `  T
)
cat.2  |-  O  =  dom  J
cat.5  |-  J  =  ( id_ `  T
)
Assertion
Ref Expression
domc  |-  ( T  e.  Cat OLD  ->  D : M --> O )

Proof of Theorem domc
StepHypRef Expression
1 catded 25764 . 2  |-  ( T  e.  Cat OLD  ->  T  e.  Ded )
2 dedalg 25743 . 2  |-  ( T  e.  Ded  ->  T  e.  Alg  )
3 cat.1 . . 3  |-  M  =  dom  D
4 cat.3 . . 3  |-  D  =  ( dom_ `  T
)
5 cat.2 . . 3  |-  O  =  dom  J
6 cat.5 . . 3  |-  J  =  ( id_ `  T
)
73, 4, 5, 6doma 25728 . 2  |-  ( T  e.  Alg  ->  D : M --> O )
81, 2, 73syl 18 1  |-  ( T  e.  Cat OLD  ->  D : M --> O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   dom cdm 4689   -->wf 5251   ` cfv 5255    Alg calg 25711   dom_cdom_ 25712   id_cid_ 25714   Dedcded 25734    Cat
OLD ccatOLD 25752
This theorem is referenced by:  dmo  25776  idsubfun  25858
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-1st 6122  df-2nd 6123  df-alg 25716  df-dom_ 25717  df-cod_ 25718  df-id_ 25719  df-cmpa 25720  df-ded 25735  df-catOLD 25753
  Copyright terms: Public domain W3C validator