Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domcatval2 Unicode version

Theorem domcatval2 25931
Description: The domain of a morphism in the category Set. (Contributed by FL, 6-Nov-2013.)
Hypotheses
Ref Expression
domcatval2.1  |- .Morphism  =  ( Morphism SetCat `  U )
domcatval2.2  |- .dom  =  ( dom SetCat `  U
)
Assertion
Ref Expression
domcatval2  |-  ( ( U  e.  Univ  /\  A  e. .Morphism  )  ->  (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )
)

Proof of Theorem domcatval2
StepHypRef Expression
1 domcatval2.1 . 2  |- .Morphism  =  ( Morphism SetCat `  U )
2 eleq2 2344 . . . 4  |-  (.Morphism  =  ( Morphism SetCat `  U )  ->  ( A  e. .Morphism  <->  A  e.  ( Morphism SetCat `  U )
) )
32anbi2d 684 . . 3  |-  (.Morphism  =  ( Morphism SetCat `  U )  ->  ( ( U  e. 
Univ  /\  A  e. .Morphism  ) 
<->  ( U  e.  Univ  /\  A  e.  ( Morphism SetCat `  U ) ) ) )
4 domcatval2.2 . . . 4  |- .dom  =  ( dom SetCat `  U
)
5 domcatval 25930 . . . . 5  |-  ( ( U  e.  Univ  /\  A  e.  ( Morphism SetCat `  U )
)  ->  ( ( dom
SetCat `  U ) `  A )  =  ( ( 1st  o.  1st ) `  A )
)
6 fveq1 5524 . . . . . 6  |-  (.dom  =  ( dom SetCat `  U
)  ->  (.dom  `  A )  =  ( ( dom SetCat `  U
) `  A )
)
76eqeq1d 2291 . . . . 5  |-  (.dom  =  ( dom SetCat `  U
)  ->  ( (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )  <->  ( ( dom SetCat `  U
) `  A )  =  ( ( 1st 
o.  1st ) `  A
) ) )
85, 7syl5ibr 212 . . . 4  |-  (.dom  =  ( dom SetCat `  U
)  ->  ( ( U  e.  Univ  /\  A  e.  ( Morphism SetCat `  U )
)  ->  (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )
) )
94, 8ax-mp 8 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  ( Morphism SetCat `  U )
)  ->  (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )
)
103, 9syl6bi 219 . 2  |-  (.Morphism  =  ( Morphism SetCat `  U )  ->  ( ( U  e. 
Univ  /\  A  e. .Morphism  )  ->  (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )
) )
111, 10ax-mp 8 1  |-  ( ( U  e.  Univ  /\  A  e. .Morphism  )  ->  (.dom  `  A )  =  ( ( 1st  o.  1st ) `  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    o. ccom 4693   ` cfv 5255   1stc1st 6120   Univcgru 8412   Morphism SetCatccmrcase 25910   dom
SetCatcdomcase 25919
This theorem is referenced by:  morexcmp  25967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-domcatset 25920
  Copyright terms: Public domain W3C validator