Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domfldref Unicode version

Theorem domfldref 25061
 Description: The domain of a reflexive relation is equal to its field . (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
domfldref
Distinct variable group:   ,

Proof of Theorem domfldref
StepHypRef Expression
1 relfld 5198 . . 3
2 domrngref 25060 . . . 4
3 uneq2 3323 . . . . . 6
43eqcomd 2288 . . . . 5
5 eqtr 2300 . . . . . . 7
6 unidm 3318 . . . . . . 7
75, 6syl6req 2332 . . . . . 6
87ex 423 . . . . 5
94, 8syl5com 26 . . . 4
102, 9syl 15 . . 3
111, 10syl5com 26 . 2
1211anabsi5 790 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1623  wral 2543   cun 3150  cuni 3827   class class class wbr 4023   cdm 4689   crn 4690   wrel 4694 This theorem is referenced by:  preodom2  25226  dfps2  25289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700
 Copyright terms: Public domain W3C validator