MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex Unicode version

Theorem domssex 7038
Description: Weakening of domssex 7038 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domssex
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6889 . 2  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
2 reldom 6885 . . 3  |-  Rel  ~<_
32brrelex2i 4746 . 2  |-  ( A  ~<_  B  ->  B  e.  _V )
4 vex 2804 . . . . . . . 8  |-  f  e. 
_V
5 f1stres 6157 . . . . . . . . . 10  |-  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )
65a1i 10 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f ) )
7 difexg 4178 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
87adantl 452 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( B  \  ran  f )  e.  _V )
9 snex 4232 . . . . . . . . . 10  |-  { ~P U.
ran  A }  e.  _V
10 xpexg 4816 . . . . . . . . . 10  |-  ( ( ( B  \  ran  f )  e.  _V  /\ 
{ ~P U. ran  A }  e.  _V )  ->  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V )
118, 9, 10sylancl 643 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } )  e.  _V )
12 fex2 5417 . . . . . . . . 9  |-  ( ( ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )  /\  (
( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V  /\  ( B  \  ran  f
)  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
136, 11, 8, 12syl3anc 1182 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
14 unexg 4537 . . . . . . . 8  |-  ( ( f  e.  _V  /\  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A } ) )  e.  _V )  -> 
( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
154, 13, 14sylancr 644 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
16 cnvexg 5224 . . . . . . 7  |-  ( ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
1715, 16syl 15 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
18 rnexg 4956 . . . . . 6  |-  ( `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V  ->  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
1917, 18syl 15 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
20 simpl 443 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  f : A -1-1-> B )
21 f1dm 5457 . . . . . . . . . 10  |-  ( f : A -1-1-> B  ->  dom  f  =  A
)
224dmex 4957 . . . . . . . . . 10  |-  dom  f  e.  _V
2321, 22syl6eqelr 2385 . . . . . . . . 9  |-  ( f : A -1-1-> B  ->  A  e.  _V )
2423adantr 451 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  e.  _V )
25 simpr 447 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  e.  _V )
26 eqid 2296 . . . . . . . . 9  |-  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  =  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )
2726domss2 7036 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  A  e.  _V  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2820, 24, 25, 27syl3anc 1182 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2928simp2d 968 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3028simp1d 967 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )
31 f1oen3g 6893 . . . . . . 7  |-  ( ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  /\  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3217, 30, 31syl2anc 642 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3329, 32jca 518 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
34 sseq2 3213 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( A  C_  x  <->  A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
35 breq2 4043 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( B  ~~  x  <->  B 
~~  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
3634, 35anbi12d 691 . . . . . 6  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( ( A  C_  x  /\  B  ~~  x
)  <->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) ) )
3736spcegv 2882 . . . . 5  |-  ( ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  ( ( A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
3819, 33, 37sylc 56 . . . 4  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) )
3938ex 423 . . 3  |-  ( f : A -1-1-> B  -> 
( B  e.  _V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
4039exlimiv 1624 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( B  e. 
_V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
411, 3, 40sylc 56 1  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843   class class class wbr 4039    _I cid 4320    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707    o. ccom 4709   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   1stc1st 6136    ~~ cen 6876    ~<_ cdom 6877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6138  df-2nd 6139  df-en 6880  df-dom 6881
  Copyright terms: Public domain W3C validator