MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtri2 Unicode version

Theorem domtri2 7638
Description: Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
domtri2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )

Proof of Theorem domtri2
StepHypRef Expression
1 carddom2 7626 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
2 cardon 7593 . . . 4  |-  ( card `  A )  e.  On
3 cardon 7593 . . . 4  |-  ( card `  B )  e.  On
4 ontri1 4442 . . . 4  |-  ( ( ( card `  A
)  e.  On  /\  ( card `  B )  e.  On )  ->  (
( card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
) )
52, 3, 4mp2an 653 . . 3  |-  ( (
card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
)
6 cardsdom2 7637 . . . . 5  |-  ( ( B  e.  dom  card  /\  A  e.  dom  card )  ->  ( ( card `  B )  e.  (
card `  A )  <->  B 
~<  A ) )
76ancoms 439 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  B )  e.  (
card `  A )  <->  B 
~<  A ) )
87notbid 285 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( -.  ( card `  B )  e.  ( card `  A
)  <->  -.  B  ~<  A ) )
95, 8syl5bb 248 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  -.  B  ~<  A ) )
101, 9bitr3d 246 1  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696    C_ wss 3165   class class class wbr 4039   Oncon0 4408   dom cdm 4705   ` cfv 5271    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584
This theorem is referenced by:  fidomtri  7642  harsdom  7644  infdif  7851  infdif2  7852  infunsdom1  7855  infunsdom  7856  infxp  7857  domtri  8194  canthp1lem2  8291  pwfseqlem4a  8299  pwfseqlem4  8300  gchaleph  8313  numinfctb  27371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-card 7588
  Copyright terms: Public domain W3C validator