MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriomlem Unicode version

Theorem domtriomlem 8068
Description: Lemma for domtriom 8069. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypotheses
Ref Expression
domtriomlem.1  |-  A  e. 
_V
domtriomlem.2  |-  B  =  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }
domtriomlem.3  |-  C  =  ( n  e.  om  |->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
) )
Assertion
Ref Expression
domtriomlem  |-  ( -.  A  e.  Fin  ->  om  ~<_  A )
Distinct variable groups:    A, b, n, y    B, b    C, k, n    k, b    y,
b
Allowed substitution hints:    A( k)    B( y, k, n)    C( y,
b)

Proof of Theorem domtriomlem
Dummy variables  c  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domtriomlem.2 . . . . 5  |-  B  =  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }
2 domtriomlem.1 . . . . . . 7  |-  A  e. 
_V
32pwex 4193 . . . . . 6  |-  ~P A  e.  _V
4 simpl 443 . . . . . . . 8  |-  ( ( y  C_  A  /\  y  ~~  ~P n )  ->  y  C_  A
)
54ss2abi 3245 . . . . . . 7  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  C_  { y  |  y  C_  A }
6 df-pw 3627 . . . . . . 7  |-  ~P A  =  { y  |  y 
C_  A }
75, 6sseqtr4i 3211 . . . . . 6  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  C_  ~P A
83, 7ssexi 4159 . . . . 5  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  e.  _V
91, 8eqeltri 2353 . . . 4  |-  B  e. 
_V
10 omex 7344 . . . . 5  |-  om  e.  _V
1110enref 6894 . . . 4  |-  om  ~~  om
129, 11axcc3 8064 . . 3  |-  E. b
( b  Fn  om  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )
13 nfv 1605 . . . . . . . 8  |-  F/ n  -.  A  e.  Fin
14 nfra1 2593 . . . . . . . 8  |-  F/ n A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B )
1513, 14nfan 1771 . . . . . . 7  |-  F/ n
( -.  A  e. 
Fin  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )
16 nnfi 7053 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  n  e.  Fin )
17 pwfi 7151 . . . . . . . . . . . . . 14  |-  ( n  e.  Fin  <->  ~P n  e.  Fin )
1816, 17sylib 188 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  ~P n  e.  Fin )
19 ficardom 7594 . . . . . . . . . . . . 13  |-  ( ~P n  e.  Fin  ->  (
card `  ~P n
)  e.  om )
20 isinf 7076 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  Fin  ->  A. m  e.  om  E. y ( y  C_  A  /\  y  ~~  m
) )
21 breq2 4027 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( card `  ~P n )  ->  (
y  ~~  m  <->  y  ~~  ( card `  ~P n
) ) )
2221anbi2d 684 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( card `  ~P n )  ->  (
( y  C_  A  /\  y  ~~  m )  <-> 
( y  C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2322exbidv 1612 . . . . . . . . . . . . . . 15  |-  ( m  =  ( card `  ~P n )  ->  ( E. y ( y  C_  A  /\  y  ~~  m
)  <->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2423rspcv 2880 . . . . . . . . . . . . . 14  |-  ( (
card `  ~P n
)  e.  om  ->  ( A. m  e.  om  E. y ( y  C_  A  /\  y  ~~  m
)  ->  E. y
( y  C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2520, 24syl5 28 . . . . . . . . . . . . 13  |-  ( (
card `  ~P n
)  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2618, 19, 253syl 18 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
27 finnum 7581 . . . . . . . . . . . . . . . 16  |-  ( ~P n  e.  Fin  ->  ~P n  e.  dom  card )
28 cardid2 7586 . . . . . . . . . . . . . . . 16  |-  ( ~P n  e.  dom  card  -> 
( card `  ~P n
)  ~~  ~P n
)
2918, 27, 283syl 18 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( card `  ~P n ) 
~~  ~P n )
30 entr 6913 . . . . . . . . . . . . . . . 16  |-  ( ( y  ~~  ( card `  ~P n )  /\  ( card `  ~P n
)  ~~  ~P n
)  ->  y  ~~  ~P n )
3130expcom 424 . . . . . . . . . . . . . . 15  |-  ( (
card `  ~P n
)  ~~  ~P n  ->  ( y  ~~  ( card `  ~P n )  ->  y  ~~  ~P n ) )
3229, 31syl 15 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
y  ~~  ( card `  ~P n )  -> 
y  ~~  ~P n
) )
3332anim2d 548 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  (
( y  C_  A  /\  y  ~~  ( card `  ~P n ) )  ->  ( y  C_  A  /\  y  ~~  ~P n ) ) )
3433eximdv 1608 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  ( E. y ( y  C_  A  /\  y  ~~  ( card `  ~P n ) )  ->  E. y
( y  C_  A  /\  y  ~~  ~P n
) ) )
3526, 34syld 40 . . . . . . . . . . 11  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) ) )
361neeq1i 2456 . . . . . . . . . . . 12  |-  ( B  =/=  (/)  <->  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  =/=  (/) )
37 abn0 3473 . . . . . . . . . . . 12  |-  ( { y  |  ( y 
C_  A  /\  y  ~~  ~P n ) }  =/=  (/)  <->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) )
3836, 37bitri 240 . . . . . . . . . . 11  |-  ( B  =/=  (/)  <->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) )
3935, 38syl6ibr 218 . . . . . . . . . 10  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  B  =/=  (/) ) )
4039com12 27 . . . . . . . . 9  |-  ( -.  A  e.  Fin  ->  ( n  e.  om  ->  B  =/=  (/) ) )
4140adantr 451 . . . . . . . 8  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  B  =/=  (/) ) )
42 rsp 2603 . . . . . . . . 9  |-  ( A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
)  ->  ( n  e.  om  ->  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) ) )
4342adantl 452 . . . . . . . 8  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) ) )
4441, 43mpdd 36 . . . . . . 7  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  ( b `  n
)  e.  B ) )
4515, 44ralrimi 2624 . . . . . 6  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  ->  A. n  e.  om  ( b `  n
)  e.  B )
46453adant2 974 . . . . 5  |-  ( ( -.  A  e.  Fin  /\  b  Fn  om  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )  ->  A. n  e.  om  ( b `  n )  e.  B
)
47463expib 1154 . . . 4  |-  ( -.  A  e.  Fin  ->  ( ( b  Fn  om  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  ->  A. n  e.  om  ( b `  n
)  e.  B ) )
4847eximdv 1608 . . 3  |-  ( -.  A  e.  Fin  ->  ( E. b ( b  Fn  om  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )  ->  E. b A. n  e.  om  ( b `  n
)  e.  B ) )
4912, 48mpi 16 . 2  |-  ( -.  A  e.  Fin  ->  E. b A. n  e. 
om  ( b `  n )  e.  B
)
50 axcc2 8063 . . . . 5  |-  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )
51 simp2 956 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
c  Fn  om )
52 nfra1 2593 . . . . . . . . . . 11  |-  F/ n A. n  e.  om  ( b `  n
)  e.  B
53 nfra1 2593 . . . . . . . . . . 11  |-  F/ n A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) )
5452, 53nfan 1771 . . . . . . . . . 10  |-  F/ n
( A. n  e. 
om  ( b `  n )  e.  B  /\  A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )
55 fvex 5539 . . . . . . . . . . . . . . . 16  |-  ( b `
 n )  e. 
_V
56 sseq1 3199 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( b `  n )  ->  (
y  C_  A  <->  ( b `  n )  C_  A
) )
57 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( b `  n )  ->  (
y  ~~  ~P n  <->  ( b `  n ) 
~~  ~P n ) )
5856, 57anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( b `  n )  ->  (
( y  C_  A  /\  y  ~~  ~P n
)  <->  ( ( b `
 n )  C_  A  /\  ( b `  n )  ~~  ~P n ) ) )
5955, 58, 1elab2 2917 . . . . . . . . . . . . . . 15  |-  ( ( b `  n )  e.  B  <->  ( (
b `  n )  C_  A  /\  ( b `
 n )  ~~  ~P n ) )
6059simprbi 450 . . . . . . . . . . . . . 14  |-  ( ( b `  n )  e.  B  ->  (
b `  n )  ~~  ~P n )
6160ralimi 2618 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  A. n  e.  om  ( b `  n )  ~~  ~P n )
62 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
b `  n )  =  ( b `  k ) )
63 pweq 3628 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ~P n  =  ~P k
)
6462, 63breq12d 4036 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
( b `  n
)  ~~  ~P n  <->  ( b `  k ) 
~~  ~P k ) )
6564cbvralv 2764 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  om  (
b `  n )  ~~  ~P n  <->  A. k  e.  om  ( b `  k )  ~~  ~P k )
66 peano2 4676 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  om  ->  suc  n  e.  om )
67 omelon 7347 . . . . . . . . . . . . . . . . . . 19  |-  om  e.  On
6867onelssi 4501 . . . . . . . . . . . . . . . . . 18  |-  ( suc  n  e.  om  ->  suc  n  C_  om )
69 ssralv 3237 . . . . . . . . . . . . . . . . . 18  |-  ( suc  n  C_  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  A. k  e.  suc  n ( b `  k )  ~~  ~P k ) )
7066, 68, 693syl 18 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  A. k  e.  suc  n ( b `  k )  ~~  ~P k ) )
71 pwsdompw 7830 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( b `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( b `  k )  ~<  (
b `  n )
)
7271ex 423 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. k  e.  suc  n ( b `  k )  ~~  ~P k  ->  U_ k  e.  n  ( b `  k
)  ~<  ( b `  n ) ) )
7370, 72syld 40 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  U_ k  e.  n  ( b `  k
)  ~<  ( b `  n ) ) )
74 sdomdif 7009 . . . . . . . . . . . . . . . 16  |-  ( U_ k  e.  n  (
b `  k )  ~<  ( b `  n
)  ->  ( (
b `  n )  \  U_ k  e.  n  ( b `  k
) )  =/=  (/) )
7573, 74syl6 29 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  =/=  (/) ) )
7665, 75syl5bi 208 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  ~~  ~P n  ->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  =/=  (/) ) )
77 difss 3303 . . . . . . . . . . . . . . . . 17  |-  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  C_  (
b `  n )
7855, 77ssexi 4159 . . . . . . . . . . . . . . . 16  |-  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  e.  _V
79 domtriomlem.3 . . . . . . . . . . . . . . . . 17  |-  C  =  ( n  e.  om  |->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
) )
8079fvmpt2 5608 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  e.  _V )  ->  ( C `  n
)  =  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) ) )
8178, 80mpan2 652 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( C `  n )  =  ( ( b `
 n )  \  U_ k  e.  n  ( b `  k
) ) )
8281neeq1d 2459 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
( C `  n
)  =/=  (/)  <->  ( (
b `  n )  \  U_ k  e.  n  ( b `  k
) )  =/=  (/) ) )
8376, 82sylibrd 225 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  ~~  ~P n  ->  ( C `  n
)  =/=  (/) ) )
8461, 83syl5com 26 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( n  e.  om  ->  ( C `  n )  =/=  (/) ) )
8584adantr 451 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( C `  n
)  =/=  (/) ) )
86 rsp 2603 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) )  ->  (
n  e.  om  ->  ( ( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) ) )
8786adantl 452 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) ) )
8885, 87mpdd 36 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( c `  n
)  e.  ( C `
 n ) ) )
8954, 88ralrimi 2624 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  ->  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
90893adant2 974 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  ->  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
9151, 90jca 518 . . . . . . 7  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) )
92913expib 1154 . . . . . 6  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( ( c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) ) )
9392eximdv 1608 . . . . 5  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( E. c ( c  Fn 
om  /\  A. n  e.  om  ( ( C `
 n )  =/=  (/)  ->  ( c `  n )  e.  ( C `  n ) ) )  ->  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) ) )
9450, 93mpi 16 . . . 4  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) )
95 simp2 956 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c  Fn  om )
96 nfra1 2593 . . . . . . . . . . . . 13  |-  F/ n A. n  e.  om  ( c `  n
)  e.  ( C `
 n )
9752, 96nfan 1771 . . . . . . . . . . . 12  |-  F/ n
( A. n  e. 
om  ( b `  n )  e.  B  /\  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
98 rsp 2603 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  ( C `  n ) ) )
9998com12 27 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( C `
 n ) ) )
100 rsp 2603 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( n  e.  om  ->  (
b `  n )  e.  B ) )
101100com12 27 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  e.  B  -> 
( b `  n
)  e.  B ) )
10281eleq2d 2350 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  <->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
103 eldifi 3298 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c `  n )  e.  ( ( b `
 n )  \  U_ k  e.  n  ( b `  k
) )  ->  (
c `  n )  e.  ( b `  n
) )
104102, 103syl6bi 219 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( b `
 n ) ) )
10559simplbi 446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( b `  n )  e.  B  ->  (
b `  n )  C_  A )
106105sseld 3179 . . . . . . . . . . . . . . . . . 18  |-  ( ( b `  n )  e.  B  ->  (
( c `  n
)  e.  ( b `
 n )  -> 
( c `  n
)  e.  A ) )
107104, 106syl9 66 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  (
( b `  n
)  e.  B  -> 
( ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  A
) ) )
108101, 107syld 40 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  e.  B  -> 
( ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  A
) ) )
109108com23 72 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  -> 
( A. n  e. 
om  ( b `  n )  e.  B  ->  ( c `  n
)  e.  A ) ) )
11099, 109syld 40 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( A. n  e. 
om  ( b `  n )  e.  B  ->  ( c `  n
)  e.  A ) ) )
111110com13 74 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  A
) ) )
112111imp 418 . . . . . . . . . . . 12  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  (
n  e.  om  ->  ( c `  n )  e.  A ) )
11397, 112ralrimi 2624 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. n  e.  om  ( c `  n )  e.  A
)
1141133adant2 974 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. n  e.  om  ( c `  n )  e.  A
)
115 ffnfv 5685 . . . . . . . . . 10  |-  ( c : om --> A  <->  ( c  Fn  om  /\  A. n  e.  om  ( c `  n )  e.  A
) )
11695, 114, 115sylanbrc 645 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c : om --> A )
117 nfv 1605 . . . . . . . . . . . 12  |-  F/ n  k  e.  om
118 nnord 4664 . . . . . . . . . . . . . . . 16  |-  ( k  e.  om  ->  Ord  k )
119 nnord 4664 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  Ord  n )
120 ordtri3or 4424 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  k  /\  Ord  n )  ->  (
k  e.  n  \/  k  =  n  \/  n  e.  k ) )
121118, 119, 120syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( k  e.  n  \/  k  =  n  \/  n  e.  k
) )
12298, 102mpbidi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
12396, 122ralrimi 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  A. n  e.  om  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) )
124 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  k  ->  (
c `  n )  =  ( c `  k ) )
125 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
126125cbviunv 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  U_ k  e.  n  ( b `  k )  =  U_ j  e.  n  (
b `  j )
127 iuneq1 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( n  =  k  ->  U_ j  e.  n  ( b `  j )  =  U_ j  e.  k  (
b `  j )
)
128126, 127syl5eq 2327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  k  ->  U_ k  e.  n  ( b `  k )  =  U_ j  e.  k  (
b `  j )
)
12962, 128difeq12d 3295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  k  ->  (
( b `  n
)  \  U_ k  e.  n  ( b `  k ) )  =  ( ( b `  k )  \  U_ j  e.  k  (
b `  j )
) )
130124, 129eleq12d 2351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  k  ->  (
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  <->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
131130rspccv 2881 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. n  e.  om  (
c `  n )  e.  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  ->  ( k  e.  om  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
132123, 131syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
133132com12 27 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) ) ) )
1341333ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
135 eldifi 3298 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( c `  k )  e.  ( ( b `
 k )  \  U_ j  e.  k 
( b `  j
) )  ->  (
c `  k )  e.  ( b `  k
) )
136 eleq1 2343 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( b `
 k )  <->  ( c `  n )  e.  ( b `  k ) ) )
137135, 136syl5ib 210 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  ->  (
c `  n )  e.  ( b `  k
) ) )
1381373ad2ant3 978 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) )  -> 
( c `  n
)  e.  ( b `
 k ) ) )
139134, 138syld 40 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  ( b `  k ) ) )
140139imp 418 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  ( b `  k ) )
141 ssiun2 3945 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  n  ->  (
b `  k )  C_ 
U_ k  e.  n  ( b `  k
) )
142141sseld 3179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  n  ->  (
( c `  n
)  e.  ( b `
 k )  -> 
( c `  n
)  e.  U_ k  e.  n  ( b `  k ) ) )
143140, 142syl5 28 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  n  ->  (
( ( k  e. 
om  /\  n  e.  om 
/\  ( c `  k )  =  ( c `  n ) )  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ k  e.  n  (
b `  k )
) )
1441433impib 1149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ k  e.  n  (
b `  k )
)
145122com12 27 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) ) ) )
1461453ad2ant2 977 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
147146imp 418 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) )
148 eldifn 3299 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c `  n )  e.  ( ( b `
 n )  \  U_ k  e.  n  ( b `  k
) )  ->  -.  ( c `  n
)  e.  U_ k  e.  n  ( b `  k ) )
149147, 148syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ k  e.  n  ( b `  k
) )
1501493adant1 973 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ k  e.  n  ( b `  k
) )
151144, 150pm2.65i 165 . . . . . . . . . . . . . . . . . . . 20  |-  -.  (
k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )
152151pm2.21i 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  k  =  n )
1531523exp 1150 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  n  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
154 ax-1 5 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) )
155154a1d 22 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
156 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  n  ->  (
b `  j )  =  ( b `  n ) )
157156ssiun2s 3946 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  k  ->  (
b `  n )  C_ 
U_ j  e.  k  ( b `  j
) )
158157sseld 3179 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  k  ->  (
( c `  n
)  e.  ( b `
 n )  -> 
( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
159103, 158syl5 28 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  k  ->  (
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  ->  (
c `  n )  e.  U_ j  e.  k  ( b `  j
) ) )
160147, 159syl5 28 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  k  ->  (
( ( k  e. 
om  /\  n  e.  om 
/\  ( c `  k )  =  ( c `  n ) )  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) )
1611603impib 1149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
)
162 eleq1 2343 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  <->  ( c `  n )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
163 eldifn 3299 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( c `  n )  e.  ( ( b `
 k )  \  U_ j  e.  k 
( b `  j
) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) )
164162, 163syl6bi 219 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
1651643ad2ant3 978 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
166134, 165syld 40 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  -.  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) )
167166a1i 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  k  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  -.  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) ) )
1681673imp 1145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ j  e.  k  ( b `  j
) )
169161, 168pm2.65i 165 . . . . . . . . . . . . . . . . . . . 20  |-  -.  (
n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )
170169pm2.21i 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  k  =  n )
1711703exp 1150 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  k  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
172153, 155, 1713jaoi 1245 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( ( k  e.  om  /\  n  e.  om  /\  ( c `
 k )  =  ( c `  n
) )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) )
173172com12 27 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) )
1741733expia 1153 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  ( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) ) )
175121, 174mpid 37 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
176175com3r 73 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( (
k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  k  =  n ) ) )
177176exp3a 425 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  ( n  e.  om  ->  ( (
c `  k )  =  ( c `  n )  ->  k  =  n ) ) ) )
17896, 117, 177ralrimd 2631 . . . . . . . . . . 11  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  A. n  e.  om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) ) )
179178ralrimiv 2625 . . . . . . . . . 10  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  A. k  e.  om  A. n  e. 
om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) )
1801793ad2ant3 978 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. k  e.  om  A. n  e. 
om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) )
181 dff13 5783 . . . . . . . . 9  |-  ( c : om -1-1-> A  <->  ( c : om --> A  /\  A. k  e.  om  A. n  e.  om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) ) )
182116, 180, 181sylanbrc 645 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c : om -1-1-> A )
183 19.8a 1718 . . . . . . . 8  |-  ( c : om -1-1-> A  ->  E. c  c : om
-1-1-> A )
184182, 183syl 15 . . . . . . 7  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  E. c 
c : om -1-1-> A
)
1852brdom 6874 . . . . . . 7  |-  ( om  ~<_  A  <->  E. c  c : om -1-1-> A )
186184, 185sylibr 203 . . . . . 6  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  om  ~<_  A )
1871863expib 1154 . . . . 5  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( ( c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  om  ~<_  A ) )
188187exlimdv 1664 . . . 4  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( E. c ( c  Fn 
om  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  om  ~<_  A ) )
18994, 188mpd 14 . . 3  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  om  ~<_  A )
190189exlimiv 1666 . 2  |-  ( E. b A. n  e. 
om  ( b `  n )  e.  B  ->  om  ~<_  A )
19149, 190syl 15 1  |-  ( -.  A  e.  Fin  ->  om  ~<_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    \/ w3o 933    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   U_ciun 3905   class class class wbr 4023    e. cmpt 4077   Ord word 4391   suc csuc 4394   omcom 4656   dom cdm 4689    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   ` cfv 5255    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   Fincfn 6863   cardccrd 7568
This theorem is referenced by:  domtriom  8069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794
  Copyright terms: Public domain W3C validator