MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Unicode version

Theorem domtriord 7245
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 7219 . . . . 5  |-  ( ( B  ~<_  A  /\  A  ~<_  B )  ->  B  ~~  A )
21expcom 425 . . . 4  |-  ( A  ~<_  B  ->  ( B  ~<_  A  ->  B  ~~  A
) )
32a1i 11 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  -> 
( B  ~<_  A  ->  B  ~~  A ) ) )
4 iman 414 . . . 4  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  ( B  ~<_  A  /\  -.  B  ~~  A ) )
5 brsdom 7122 . . . 4  |-  ( B 
~<  A  <->  ( B  ~<_  A  /\  -.  B  ~~  A ) )
64, 5xchbinxr 303 . . 3  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  B  ~<  A )
73, 6syl6ib 218 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  ->  -.  B  ~<  A ) )
8 onelss 4615 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
9 ssdomg 7145 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  C_  B  ->  A  ~<_  B ) )
108, 9syld 42 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  ~<_  B ) )
1110adantl 453 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  A  ~<_  B ) )
1211con3d 127 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  A  e.  B ) )
13 ontri1 4607 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1413ancoms 440 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1512, 14sylibrd 226 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  C_  A
) )
16 ssdomg 7145 . . . . . . 7  |-  ( A  e.  On  ->  ( B  C_  A  ->  B  ~<_  A ) )
1716adantr 452 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  ->  B  ~<_  A ) )
1815, 17syld 42 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<_  A ) )
19 ensym 7148 . . . . . . . 8  |-  ( B 
~~  A  ->  A  ~~  B )
20 endom 7126 . . . . . . . 8  |-  ( A 
~~  B  ->  A  ~<_  B )
2119, 20syl 16 . . . . . . 7  |-  ( B 
~~  A  ->  A  ~<_  B )
2221con3i 129 . . . . . 6  |-  ( -.  A  ~<_  B  ->  -.  B  ~~  A )
2322a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  B  ~~  A ) )
2418, 23jcad 520 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  ( B  ~<_  A  /\  -.  B  ~~  A ) ) )
2524, 5syl6ibr 219 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<  A ) )
2625con1d 118 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  ~<  A  ->  A  ~<_  B ) )
277, 26impbid 184 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725    C_ wss 3312   class class class wbr 4204   Oncon0 4573    ~~ cen 7098    ~<_ cdom 7099    ~< csdm 7100
This theorem is referenced by:  sdomel  7246  cardsdomel  7853  alephord  7948  alephsucdom  7952  alephdom2  7960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104
  Copyright terms: Public domain W3C validator