MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Unicode version

Theorem domtriord 7007
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 6981 . . . . 5  |-  ( ( B  ~<_  A  /\  A  ~<_  B )  ->  B  ~~  A )
21expcom 424 . . . 4  |-  ( A  ~<_  B  ->  ( B  ~<_  A  ->  B  ~~  A
) )
32a1i 10 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  -> 
( B  ~<_  A  ->  B  ~~  A ) ) )
4 iman 413 . . . 4  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  ( B  ~<_  A  /\  -.  B  ~~  A ) )
5 brsdom 6884 . . . 4  |-  ( B 
~<  A  <->  ( B  ~<_  A  /\  -.  B  ~~  A ) )
64, 5xchbinxr 302 . . 3  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  B  ~<  A )
73, 6syl6ib 217 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  ->  -.  B  ~<  A ) )
8 onelss 4434 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
9 ssdomg 6907 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  C_  B  ->  A  ~<_  B ) )
108, 9syld 40 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  ~<_  B ) )
1110adantl 452 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  A  ~<_  B ) )
1211con3d 125 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  A  e.  B ) )
13 ontri1 4426 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1413ancoms 439 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1512, 14sylibrd 225 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  C_  A
) )
16 ssdomg 6907 . . . . . . 7  |-  ( A  e.  On  ->  ( B  C_  A  ->  B  ~<_  A ) )
1716adantr 451 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  ->  B  ~<_  A ) )
1815, 17syld 40 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<_  A ) )
19 ensym 6910 . . . . . . . 8  |-  ( B 
~~  A  ->  A  ~~  B )
20 endom 6888 . . . . . . . 8  |-  ( A 
~~  B  ->  A  ~<_  B )
2119, 20syl 15 . . . . . . 7  |-  ( B 
~~  A  ->  A  ~<_  B )
2221con3i 127 . . . . . 6  |-  ( -.  A  ~<_  B  ->  -.  B  ~~  A )
2322a1i 10 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  B  ~~  A ) )
2418, 23jcad 519 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  ( B  ~<_  A  /\  -.  B  ~~  A ) ) )
2524, 5syl6ibr 218 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<  A ) )
2625con1d 116 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  ~<  A  ->  A  ~<_  B ) )
277, 26impbid 183 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   class class class wbr 4023   Oncon0 4392    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862
This theorem is referenced by:  sdomel  7008  cardsdomel  7607  alephord  7702  alephsucdom  7706  alephdom2  7714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866
  Copyright terms: Public domain W3C validator