MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domwdom Unicode version

Theorem domwdom 7288
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
domwdom  |-  ( X  ~<_  Y  ->  X  ~<_*  Y )

Proof of Theorem domwdom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-ne 2448 . . . . . . . 8  |-  ( X  =/=  (/)  <->  -.  X  =  (/) )
21biimpri 197 . . . . . . 7  |-  ( -.  X  =  (/)  ->  X  =/=  (/) )
32adantl 452 . . . . . 6  |-  ( ( X  ~<_  Y  /\  -.  X  =  (/) )  ->  X  =/=  (/) )
4 reldom 6869 . . . . . . . . 9  |-  Rel  ~<_
54brrelexi 4729 . . . . . . . 8  |-  ( X  ~<_  Y  ->  X  e.  _V )
6 0sdomg 6990 . . . . . . . 8  |-  ( X  e.  _V  ->  ( (/) 
~<  X  <->  X  =/=  (/) ) )
75, 6syl 15 . . . . . . 7  |-  ( X  ~<_  Y  ->  ( (/)  ~<  X  <->  X  =/=  (/) ) )
87adantr 451 . . . . . 6  |-  ( ( X  ~<_  Y  /\  -.  X  =  (/) )  -> 
( (/)  ~<  X  <->  X  =/=  (/) ) )
93, 8mpbird 223 . . . . 5  |-  ( ( X  ~<_  Y  /\  -.  X  =  (/) )  ->  (/) 
~<  X )
10 simpl 443 . . . . 5  |-  ( ( X  ~<_  Y  /\  -.  X  =  (/) )  ->  X  ~<_  Y )
11 fodomr 7012 . . . . 5  |-  ( (
(/)  ~<  X  /\  X  ~<_  Y )  ->  E. y 
y : Y -onto-> X
)
129, 10, 11syl2anc 642 . . . 4  |-  ( ( X  ~<_  Y  /\  -.  X  =  (/) )  ->  E. y  y : Y -onto-> X )
1312ex 423 . . 3  |-  ( X  ~<_  Y  ->  ( -.  X  =  (/)  ->  E. y 
y : Y -onto-> X
) )
1413orrd 367 . 2  |-  ( X  ~<_  Y  ->  ( X  =  (/)  \/  E. y 
y : Y -onto-> X
) )
154brrelex2i 4730 . . 3  |-  ( X  ~<_  Y  ->  Y  e.  _V )
16 brwdom 7281 . . 3  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. y  y : Y -onto-> X ) ) )
1715, 16syl 15 . 2  |-  ( X  ~<_  Y  ->  ( X  ~<_*  Y  <-> 
( X  =  (/)  \/ 
E. y  y : Y -onto-> X ) ) )
1814, 17mpbird 223 1  |-  ( X  ~<_  Y  ->  X  ~<_*  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788   (/)c0 3455   class class class wbr 4023   -onto->wfo 5253    ~<_ cdom 6861    ~< csdm 6862    ~<_* cwdom 7271
This theorem is referenced by:  wdomen1  7290  wdomen2  7291  wdom2d  7294  wdomima2g  7300  unxpwdom2  7302  unxpwdom  7303  harwdom  7304  wdomfil  7688  wdomnumr  7691  pwcdadom  7842  hsmexlem1  8052  hsmexlem4  8055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-wdom 7273
  Copyright terms: Public domain W3C validator