Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpfrac1 Unicode version

Theorem dpfrac1 28496
Description: Prove a simple equivalence involving the decimal point. See df-dp 28492 and dpcl 28495. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpfrac1  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  =  (; A B  /  10 ) )

Proof of Theorem dpfrac1
StepHypRef Expression
1 df-dp2 28491 . 2  |- _ A B  =  ( A  +  ( B  /  10 ) )
2 dpval 28494 . 2  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  = _ A B )
3 nn0cn 9991 . . 3  |-  ( A  e.  NN0  ->  A  e.  CC )
4 recn 8843 . . 3  |-  ( B  e.  RR  ->  B  e.  CC )
5 df-dec 10141 . . . . 5  |- ; A B  =  ( ( 10  x.  A
)  +  B )
65oveq1i 5884 . . . 4  |-  (; A B  /  10 )  =  ( (
( 10  x.  A
)  +  B )  /  10 )
7 10re 9842 . . . . . . . 8  |-  10  e.  RR
87recni 8865 . . . . . . 7  |-  10  e.  CC
9 mulcl 8837 . . . . . . 7  |-  ( ( 10  e.  CC  /\  A  e.  CC )  ->  ( 10  x.  A
)  e.  CC )
108, 9mpan 651 . . . . . 6  |-  ( A  e.  CC  ->  ( 10  x.  A )  e.  CC )
11 10pos 9854 . . . . . . . . 9  |-  0  <  10
127, 11gt0ne0ii 9325 . . . . . . . 8  |-  10  =/=  0
138, 12pm3.2i 441 . . . . . . 7  |-  ( 10  e.  CC  /\  10  =/=  0 )
14 divdir 9463 . . . . . . 7  |-  ( ( ( 10  x.  A
)  e.  CC  /\  B  e.  CC  /\  ( 10  e.  CC  /\  10  =/=  0 ) )  -> 
( ( ( 10  x.  A )  +  B )  /  10 )  =  ( (
( 10  x.  A
)  /  10 )  +  ( B  /  10 ) ) )
1513, 14mp3an3 1266 . . . . . 6  |-  ( ( ( 10  x.  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( ( 10  x.  A )  +  B )  /  10 )  =  ( (
( 10  x.  A
)  /  10 )  +  ( B  /  10 ) ) )
1610, 15sylan 457 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 10  x.  A )  +  B )  /  10 )  =  ( (
( 10  x.  A
)  /  10 )  +  ( B  /  10 ) ) )
17 divcan3 9464 . . . . . . . 8  |-  ( ( A  e.  CC  /\  10  e.  CC  /\  10  =/=  0 )  ->  (
( 10  x.  A
)  /  10 )  =  A )
188, 12, 17mp3an23 1269 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 10  x.  A
)  /  10 )  =  A )
1918oveq1d 5889 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( 10  x.  A )  /  10 )  +  ( B  /  10 ) )  =  ( A  +  ( B  /  10 ) ) )
2019adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 10  x.  A )  /  10 )  +  ( B  /  10 ) )  =  ( A  +  ( B  /  10 ) ) )
2116, 20eqtrd 2328 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 10  x.  A )  +  B )  /  10 )  =  ( A  +  ( B  /  10 ) ) )
226, 21syl5eq 2340 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (; A B  /  10 )  =  ( A  +  ( B  /  10 ) ) )
233, 4, 22syl2an 463 . 2  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  (; A B  /  10 )  =  ( A  +  ( B  /  10 ) ) )
241, 2, 233eqtr4a 2354 1  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  =  (; A B  /  10 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    / cdiv 9439   10c10 9819   NN0cn0 9981  ;cdc 10140  _cdp2 28489   periodcdp 28490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-dec 10141  df-dp2 28491  df-dp 28492
  Copyright terms: Public domain W3C validator