MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Unicode version

Theorem dprd2dlem1 15587
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1  |-  ( ph  ->  Rel  A )
dprd2d.2  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
dprd2d.3  |-  ( ph  ->  dom  A  C_  I
)
dprd2d.4  |-  ( (
ph  /\  i  e.  I )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
dprd2d.5  |-  ( ph  ->  G dom DProd  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
dprd2d.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
dprd2d.6  |-  ( ph  ->  C  C_  I )
Assertion
Ref Expression
dprd2dlem1  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) )  =  ( G DProd  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) ) )
Distinct variable groups:    i, j, A    C, i    i, G, j    i, I    i, K    ph, i, j    S, i, j
Allowed substitution hints:    C( j)    I(
j)    K( j)

Proof of Theorem dprd2dlem1
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6  |-  ( ph  ->  G dom DProd  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
2 dprdgrp 15551 . . . . . 6  |-  ( G dom DProd  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  ->  G  e.  Grp )
31, 2syl 16 . . . . 5  |-  ( ph  ->  G  e.  Grp )
4 eqid 2435 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
54subgacs 14963 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
6 acsmre 13865 . . . . 5  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
73, 5, 63syl 19 . . . 4  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
8 dprd2d.k . . . 4  |-  K  =  (mrCls `  (SubGrp `  G
) )
9 dprd2d.2 . . . . . 6  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
10 ffun 5584 . . . . . 6  |-  ( S : A --> (SubGrp `  G )  ->  Fun  S )
11 funiunfv 5986 . . . . . 6  |-  ( Fun 
S  ->  U_ x  e.  ( A  |`  C ) ( S `  x
)  =  U. ( S " ( A  |`  C ) ) )
129, 10, 113syl 19 . . . . 5  |-  ( ph  ->  U_ x  e.  ( A  |`  C )
( S `  x
)  =  U. ( S " ( A  |`  C ) ) )
13 resss 5161 . . . . . . . . . 10  |-  ( A  |`  C )  C_  A
1413sseli 3336 . . . . . . . . 9  |-  ( x  e.  ( A  |`  C )  ->  x  e.  A )
15 dprd2d.1 . . . . . . . . . 10  |-  ( ph  ->  Rel  A )
16 dprd2d.3 . . . . . . . . . 10  |-  ( ph  ->  dom  A  C_  I
)
17 dprd2d.4 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
1815, 9, 16, 17, 1, 8dprd2dlem2 15586 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
1914, 18sylan2 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  ( S `  x )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) )
20 1st2nd 6384 . . . . . . . . . . . . 13  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2115, 14, 20syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
22 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  x  e.  ( A  |`  C ) )
2321, 22eqeltrrd 2510 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  e.  ( A  |`  C ) )
24 fvex 5733 . . . . . . . . . . . . 13  |-  ( 2nd `  x )  e.  _V
2524opelres 5142 . . . . . . . . . . . 12  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( A  |`  C )  <->  (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A  /\  ( 1st `  x
)  e.  C ) )
2625simprbi 451 . . . . . . . . . . 11  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( A  |`  C )  ->  ( 1st `  x
)  e.  C )
2723, 26syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  ( 1st `  x )  e.  C
)
28 ovex 6097 . . . . . . . . . 10  |-  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  e.  _V
29 eqid 2435 . . . . . . . . . . 11  |-  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  =  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )
30 sneq 3817 . . . . . . . . . . . . . 14  |-  ( i  =  ( 1st `  x
)  ->  { i }  =  { ( 1st `  x ) } )
3130imaeq2d 5194 . . . . . . . . . . . . 13  |-  ( i  =  ( 1st `  x
)  ->  ( A " { i } )  =  ( A " { ( 1st `  x
) } ) )
32 oveq1 6079 . . . . . . . . . . . . 13  |-  ( i  =  ( 1st `  x
)  ->  ( i S j )  =  ( ( 1st `  x
) S j ) )
3331, 32mpteq12dv 4279 . . . . . . . . . . . 12  |-  ( i  =  ( 1st `  x
)  ->  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  =  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
3433oveq2d 6088 . . . . . . . . . . 11  |-  ( i  =  ( 1st `  x
)  ->  ( G DProd  ( j  e.  ( A
" { i } )  |->  ( i S j ) ) )  =  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
3529, 34elrnmpt1s 5109 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  e.  C  /\  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )  e.  _V )  ->  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  e.  ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
3627, 28, 35sylancl 644 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  ( G DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  e.  ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
37 elssuni 4035 . . . . . . . . 9  |-  ( ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )  e.  ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  ->  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  C_  U. ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
3836, 37syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  ( G DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  C_  U. ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
3919, 38sstrd 3350 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A  |`  C ) )  ->  ( S `  x )  C_  U. ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
4039ralrimiva 2781 . . . . . 6  |-  ( ph  ->  A. x  e.  ( A  |`  C )
( S `  x
)  C_  U. ran  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
41 iunss 4124 . . . . . 6  |-  ( U_ x  e.  ( A  |`  C ) ( S `
 x )  C_  U.
ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  <->  A. x  e.  ( A  |`  C )
( S `  x
)  C_  U. ran  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
4240, 41sylibr 204 . . . . 5  |-  ( ph  ->  U_ x  e.  ( A  |`  C )
( S `  x
)  C_  U. ran  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
4312, 42eqsstr3d 3375 . . . 4  |-  ( ph  ->  U. ( S "
( A  |`  C ) )  C_  U. ran  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
44 dprd2d.6 . . . . . . . . . . . 12  |-  ( ph  ->  C  C_  I )
4544sselda 3340 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  C )  ->  i  e.  I )
4645, 17syldan 457 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  C )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
47 ovex 6097 . . . . . . . . . . . 12  |-  ( i S j )  e. 
_V
48 eqid 2435 . . . . . . . . . . . 12  |-  ( j  e.  ( A " { i } ) 
|->  ( i S j ) )  =  ( j  e.  ( A
" { i } )  |->  ( i S j ) )
4947, 48dmmpti 5565 . . . . . . . . . . 11  |-  dom  (
j  e.  ( A
" { i } )  |->  ( i S j ) )  =  ( A " {
i } )
5049a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  C )  ->  dom  ( j  e.  ( A " { i } )  |->  ( i S j ) )  =  ( A " { i } ) )
51 imassrn 5207 . . . . . . . . . . . . . 14  |-  ( S
" ( A  |`  C ) )  C_  ran  S
52 frn 5588 . . . . . . . . . . . . . . . 16  |-  ( S : A --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
539, 52syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
54 mresspw 13805 . . . . . . . . . . . . . . . 16  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
557, 54syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (SubGrp `  G )  C_ 
~P ( Base `  G
) )
5653, 55sstrd 3350 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  S  C_  ~P ( Base `  G )
)
5751, 56syl5ss 3351 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S " ( A  |`  C ) ) 
C_  ~P ( Base `  G
) )
58 sspwuni 4168 . . . . . . . . . . . . 13  |-  ( ( S " ( A  |`  C ) )  C_  ~P ( Base `  G
)  <->  U. ( S "
( A  |`  C ) )  C_  ( Base `  G ) )
5957, 58sylib 189 . . . . . . . . . . . 12  |-  ( ph  ->  U. ( S "
( A  |`  C ) )  C_  ( Base `  G ) )
608mrccl 13824 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( A  |`  C ) ) 
C_  ( Base `  G
) )  ->  ( K `  U. ( S
" ( A  |`  C ) ) )  e.  (SubGrp `  G
) )
617, 59, 60syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) )  e.  (SubGrp `  G
) )
6261adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  C )  ->  ( K `  U. ( S
" ( A  |`  C ) ) )  e.  (SubGrp `  G
) )
63 oveq2 6080 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
i S j )  =  ( i S k ) )
6463, 48, 47fvmpt3i 5800 . . . . . . . . . . . 12  |-  ( k  e.  ( A " { i } )  ->  ( ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) `  k
)  =  ( i S k ) )
6564adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) `  k
)  =  ( i S k ) )
66 df-ov 6075 . . . . . . . . . . . . . 14  |-  ( i S k )  =  ( S `  <. i ,  k >. )
67 ffn 5582 . . . . . . . . . . . . . . . . 17  |-  ( S : A --> (SubGrp `  G )  ->  S  Fn  A )
689, 67syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  Fn  A )
6968ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  S  Fn  A
)
7013a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( A  |`  C )  C_  A
)
71 elrelimasn 5219 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel 
A  ->  ( k  e.  ( A " {
i } )  <->  i A
k ) )
7215, 71syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  e.  ( A " { i } )  <->  i A
k ) )
7372adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  C )  ->  (
k  e.  ( A
" { i } )  <->  i A k ) )
7473biimpa 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  i A k )
75 df-br 4205 . . . . . . . . . . . . . . . . 17  |-  ( i A k  <->  <. i ,  k >.  e.  A
)
7674, 75sylib 189 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  <. i ,  k
>.  e.  A )
77 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  i  e.  C
)
78 vex 2951 . . . . . . . . . . . . . . . . 17  |-  k  e. 
_V
7978opelres 5142 . . . . . . . . . . . . . . . 16  |-  ( <.
i ,  k >.  e.  ( A  |`  C )  <-> 
( <. i ,  k
>.  e.  A  /\  i  e.  C ) )
8076, 77, 79sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  <. i ,  k
>.  e.  ( A  |`  C ) )
81 fnfvima 5967 . . . . . . . . . . . . . . 15  |-  ( ( S  Fn  A  /\  ( A  |`  C ) 
C_  A  /\  <. i ,  k >.  e.  ( A  |`  C )
)  ->  ( S `  <. i ,  k
>. )  e.  ( S " ( A  |`  C ) ) )
8269, 70, 80, 81syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( S `  <. i ,  k >.
)  e.  ( S
" ( A  |`  C ) ) )
8366, 82syl5eqel 2519 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( i S k )  e.  ( S " ( A  |`  C ) ) )
84 elssuni 4035 . . . . . . . . . . . . 13  |-  ( ( i S k )  e.  ( S "
( A  |`  C ) )  ->  ( i S k )  C_  U. ( S " ( A  |`  C ) ) )
8583, 84syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( i S k )  C_  U. ( S " ( A  |`  C ) ) )
867, 8, 59mrcssidd 13838 . . . . . . . . . . . . 13  |-  ( ph  ->  U. ( S "
( A  |`  C ) )  C_  ( K `  U. ( S "
( A  |`  C ) ) ) )
8786ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  U. ( S "
( A  |`  C ) )  C_  ( K `  U. ( S "
( A  |`  C ) ) ) )
8885, 87sstrd 3350 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( i S k )  C_  ( K `  U. ( S
" ( A  |`  C ) ) ) )
8965, 88eqsstrd 3374 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  C )  /\  k  e.  ( A " {
i } ) )  ->  ( ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) `  k
)  C_  ( K `  U. ( S "
( A  |`  C ) ) ) )
9046, 50, 62, 89dprdlub 15572 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  C )  ->  ( G DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )  C_  ( K `  U. ( S "
( A  |`  C ) ) ) )
91 ovex 6097 . . . . . . . . . 10  |-  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) )  e.  _V
9291elpw 3797 . . . . . . . . 9  |-  ( ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) )  e.  ~P ( K `  U. ( S " ( A  |`  C ) ) )  <-> 
( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) )  C_  ( K `  U. ( S
" ( A  |`  C ) ) ) )
9390, 92sylibr 204 . . . . . . . 8  |-  ( (
ph  /\  i  e.  C )  ->  ( G DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )  e.  ~P ( K `  U. ( S
" ( A  |`  C ) ) ) )
9493, 29fmptd 5884 . . . . . . 7  |-  ( ph  ->  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) : C --> ~P ( K `  U. ( S
" ( A  |`  C ) ) ) )
95 frn 5588 . . . . . . 7  |-  ( ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) : C --> ~P ( K `
 U. ( S
" ( A  |`  C ) ) )  ->  ran  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  C_  ~P ( K `  U. ( S " ( A  |`  C ) ) ) )
9694, 95syl 16 . . . . . 6  |-  ( ph  ->  ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  C_  ~P ( K `  U. ( S
" ( A  |`  C ) ) ) )
97 sspwuni 4168 . . . . . 6  |-  ( ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) 
C_  ~P ( K `  U. ( S " ( A  |`  C ) ) )  <->  U. ran  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  C_  ( K `  U. ( S
" ( A  |`  C ) ) ) )
9896, 97sylib 189 . . . . 5  |-  ( ph  ->  U. ran  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  C_  ( K `  U. ( S
" ( A  |`  C ) ) ) )
997, 8mrcssvd 13836 . . . . 5  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) ) 
C_  ( Base `  G
) )
10098, 99sstrd 3350 . . . 4  |-  ( ph  ->  U. ran  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  C_  ( Base `  G ) )
1017, 8, 43, 100mrcssd 13837 . . 3  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) ) 
C_  ( K `  U. ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) ) )
1028mrcsscl 13833 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  C_  ( K `  U. ( S "
( A  |`  C ) ) )  /\  ( K `  U. ( S
" ( A  |`  C ) ) )  e.  (SubGrp `  G
) )  ->  ( K `  U. ran  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) ) 
C_  ( K `  U. ( S " ( A  |`  C ) ) ) )
1037, 98, 61, 102syl3anc 1184 . . 3  |-  ( ph  ->  ( K `  U. ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )  C_  ( K `  U. ( S "
( A  |`  C ) ) ) )
104101, 103eqssd 3357 . 2  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) )  =  ( K `  U. ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) ) )
105 eqid 2435 . . . . . . . 8  |-  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  =  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )
10691, 105dmmpti 5565 . . . . . . 7  |-  dom  (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  =  I
107106a1i 11 . . . . . 6  |-  ( ph  ->  dom  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  =  I )
1081, 107, 44dprdres 15574 . . . . 5  |-  ( ph  ->  ( G dom DProd  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  |`  C )  /\  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  C )
)  C_  ( G DProd  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) ) ) )
109108simpld 446 . . . 4  |-  ( ph  ->  G dom DProd  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  |`  C ) )
110 resmpt 5182 . . . . 5  |-  ( C 
C_  I  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  C )  =  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
11144, 110syl 16 . . . 4  |-  ( ph  ->  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  C )  =  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) )
112109, 111breqtrd 4228 . . 3  |-  ( ph  ->  G dom DProd  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
1138dprdspan 15573 . . 3  |-  ( G dom DProd  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  ->  ( G DProd  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )  =  ( K `  U. ran  ( i  e.  C  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) ) )
114112, 113syl 16 . 2  |-  ( ph  ->  ( G DProd  ( i  e.  C  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )  =  ( K `  U. ran  ( i  e.  C  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) ) )
115104, 114eqtr4d 2470 1  |-  ( ph  ->  ( K `  U. ( S " ( A  |`  C ) ) )  =  ( G DProd  (
i  e.  C  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   {csn 3806   <.cop 3809   U.cuni 4007   U_ciun 4085   class class class wbr 4204    e. cmpt 4258   dom cdm 4869   ran crn 4870    |` cres 4871   "cima 4872   Rel wrel 4874   Fun wfun 5439    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072   1stc1st 6338   2ndc2nd 6339   Basecbs 13457  Moorecmre 13795  mrClscmrc 13796  ACScacs 13798   Grpcgrp 14673  SubGrpcsubg 14926   DProd cdprd 15542
This theorem is referenced by:  dprd2da  15588  dprd2db  15589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-fzo 11124  df-seq 11312  df-hash 11607  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-0g 13715  df-gsum 13716  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-mhm 14726  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-mulg 14803  df-subg 14929  df-ghm 14992  df-gim 15034  df-cntz 15104  df-oppg 15130  df-cmn 15402  df-dprd 15544
  Copyright terms: Public domain W3C validator