MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Unicode version

Theorem dprdcntz2 15289
Description: The function  S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz2.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz2.c  |-  ( ph  ->  C  C_  I )
dprdcntz2.d  |-  ( ph  ->  D  C_  I )
dprdcntz2.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdcntz2.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdcntz2  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )

Proof of Theorem dprdcntz2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dprdcntz2.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
3 dprdcntz2.c . . . 4  |-  ( ph  ->  C  C_  I )
41, 2, 3dprdres 15279 . . 3  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
54simpld 445 . 2  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
6 dmres 4992 . . 3  |-  dom  ( S  |`  C )  =  ( C  i^i  dom  S )
73, 2sseqtr4d 3228 . . . 4  |-  ( ph  ->  C  C_  dom  S )
8 df-ss 3179 . . . 4  |-  ( C 
C_  dom  S  <->  ( C  i^i  dom  S )  =  C )
97, 8sylib 188 . . 3  |-  ( ph  ->  ( C  i^i  dom  S )  =  C )
106, 9syl5eq 2340 . 2  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
11 dprdgrp 15256 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
121, 11syl 15 . . 3  |-  ( ph  ->  G  e.  Grp )
13 eqid 2296 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
1413dprdssv 15267 . . 3  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
15 dprdcntz2.z . . . 4  |-  Z  =  (Cntz `  G )
1613, 15cntzsubg 14828 . . 3  |-  ( ( G  e.  Grp  /\  ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )
)  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
1712, 14, 16sylancl 643 . 2  |-  ( ph  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
18 fvres 5558 . . . 4  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
1918adantl 452 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
20 dprdcntz2.d . . . . . . . 8  |-  ( ph  ->  D  C_  I )
211, 2, 20dprdres 15279 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
2221simpld 445 . . . . . 6  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
2322adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  D ) )
24 dprdsubg 15275 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
2523, 24syl 15 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
263sselda 3193 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  I )
271, 2dprdf2 15258 . . . . . 6  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
28 ffvelrn 5679 . . . . . 6  |-  ( ( S : I --> (SubGrp `  G )  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
2927, 28sylan 457 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
3026, 29syldan 456 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  e.  (SubGrp `  G )
)
31 dmres 4992 . . . . . . 7  |-  dom  ( S  |`  D )  =  ( D  i^i  dom  S )
3220, 2sseqtr4d 3228 . . . . . . . 8  |-  ( ph  ->  D  C_  dom  S )
33 df-ss 3179 . . . . . . . 8  |-  ( D 
C_  dom  S  <->  ( D  i^i  dom  S )  =  D )
3432, 33sylib 188 . . . . . . 7  |-  ( ph  ->  ( D  i^i  dom  S )  =  D )
3531, 34syl5eq 2340 . . . . . 6  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
3635adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  D )  =  D )
3712adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  G  e.  Grp )
3813subgss 14638 . . . . . . 7  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( S `  x )  C_  ( Base `  G ) )
3930, 38syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Base `  G
) )
4013, 15cntzsubg 14828 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S `  x ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
4137, 39, 40syl2anc 642 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
42 fvres 5558 . . . . . . 7  |-  ( y  e.  D  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
4342adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
441ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  G dom DProd  S )
452ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  dom  S  =  I )
4620adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  D  C_  I )
4746sselda 3193 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  I )
4826adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  x  e.  I )
49 simpr 447 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  D )
50 noel 3472 . . . . . . . . . . . 12  |-  -.  x  e.  (/)
51 elin 3371 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  i^i  D )  <->  ( x  e.  C  /\  x  e.  D ) )
52 dprdcntz2.i . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
5352eleq2d 2363 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( C  i^i  D )  <-> 
x  e.  (/) ) )
5451, 53syl5bbr 250 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  C  /\  x  e.  D )  <->  x  e.  (/) ) )
5550, 54mtbiri 294 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( x  e.  C  /\  x  e.  D ) )
56 imnan 411 . . . . . . . . . . 11  |-  ( ( x  e.  C  ->  -.  x  e.  D
)  <->  -.  ( x  e.  C  /\  x  e.  D ) )
5755, 56sylibr 203 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  C  ->  -.  x  e.  D
) )
5857imp 418 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  -.  x  e.  D )
5958adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  -.  x  e.  D )
60 nelne2 2549 . . . . . . . 8  |-  ( ( y  e.  D  /\  -.  x  e.  D
)  ->  y  =/=  x )
6149, 59, 60syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  =/=  x )
6244, 45, 47, 48, 61, 15dprdcntz 15259 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  ( S `  y )  C_  ( Z `  ( S `  x )
) )
6343, 62eqsstrd 3225 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  C_  ( Z `  ( S `
 x ) ) )
6423, 36, 41, 63dprdlub 15277 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  C_  ( Z `  ( S `  x
) ) )
6515, 25, 30, 64cntzrecd 15003 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
6619, 65eqsstrd 3225 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
675, 10, 17, 66dprdlub 15277 1  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    i^i cin 3164    C_ wss 3165   (/)c0 3468   class class class wbr 4039   dom cdm 4705    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   Grpcgrp 14378  SubGrpcsubg 14631  Cntzccntz 14807   DProd cdprd 15247
This theorem is referenced by:  dprd2da  15293  dmdprdsplit  15298  ablfac1eulem  15323  ablfac1eu  15324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-ghm 14697  df-gim 14739  df-cntz 14809  df-oppg 14835  df-cmn 15107  df-dprd 15249
  Copyright terms: Public domain W3C validator