MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Structured version   Unicode version

Theorem dprdcntz2 15598
Description: The function  S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz2.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz2.c  |-  ( ph  ->  C  C_  I )
dprdcntz2.d  |-  ( ph  ->  D  C_  I )
dprdcntz2.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdcntz2.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdcntz2  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )

Proof of Theorem dprdcntz2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dprdcntz2.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
3 dprdcntz2.c . . . 4  |-  ( ph  ->  C  C_  I )
41, 2, 3dprdres 15588 . . 3  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
54simpld 447 . 2  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
6 dmres 5169 . . 3  |-  dom  ( S  |`  C )  =  ( C  i^i  dom  S )
73, 2sseqtr4d 3387 . . . 4  |-  ( ph  ->  C  C_  dom  S )
8 df-ss 3336 . . . 4  |-  ( C 
C_  dom  S  <->  ( C  i^i  dom  S )  =  C )
97, 8sylib 190 . . 3  |-  ( ph  ->  ( C  i^i  dom  S )  =  C )
106, 9syl5eq 2482 . 2  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
11 dprdgrp 15565 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
121, 11syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
13 eqid 2438 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
1413dprdssv 15576 . . 3  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
15 dprdcntz2.z . . . 4  |-  Z  =  (Cntz `  G )
1613, 15cntzsubg 15137 . . 3  |-  ( ( G  e.  Grp  /\  ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )
)  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
1712, 14, 16sylancl 645 . 2  |-  ( ph  ->  ( Z `  ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )
18 fvres 5747 . . . 4  |-  ( x  e.  C  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
1918adantl 454 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  =  ( S `  x
) )
20 dprdcntz2.d . . . . . . . 8  |-  ( ph  ->  D  C_  I )
211, 2, 20dprdres 15588 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
2221simpld 447 . . . . . 6  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
2322adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  G dom DProd  ( S  |`  D ) )
24 dprdsubg 15584 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
2523, 24syl 16 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
263sselda 3350 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  I )
271, 2dprdf2 15567 . . . . . 6  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
2827ffvelrnda 5872 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
2926, 28syldan 458 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  e.  (SubGrp `  G )
)
30 dmres 5169 . . . . . . 7  |-  dom  ( S  |`  D )  =  ( D  i^i  dom  S )
3120, 2sseqtr4d 3387 . . . . . . . 8  |-  ( ph  ->  D  C_  dom  S )
32 df-ss 3336 . . . . . . . 8  |-  ( D 
C_  dom  S  <->  ( D  i^i  dom  S )  =  D )
3331, 32sylib 190 . . . . . . 7  |-  ( ph  ->  ( D  i^i  dom  S )  =  D )
3430, 33syl5eq 2482 . . . . . 6  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
3534adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  dom  ( S  |`  D )  =  D )
3612adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  G  e.  Grp )
3713subgss 14947 . . . . . . 7  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( S `  x )  C_  ( Base `  G ) )
3829, 37syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Base `  G
) )
3913, 15cntzsubg 15137 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S `  x ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
4036, 38, 39syl2anc 644 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( Z `  ( S `  x ) )  e.  (SubGrp `  G )
)
41 fvres 5747 . . . . . . 7  |-  ( y  e.  D  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
4241adantl 454 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  =  ( S `  y
) )
431ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  G dom DProd  S )
442ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  dom  S  =  I )
4520adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  D  C_  I )
4645sselda 3350 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  I )
4726adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  x  e.  I )
48 simpr 449 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  e.  D )
49 noel 3634 . . . . . . . . . . . 12  |-  -.  x  e.  (/)
50 elin 3532 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  i^i  D )  <->  ( x  e.  C  /\  x  e.  D ) )
51 dprdcntz2.i . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
5251eleq2d 2505 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( C  i^i  D )  <-> 
x  e.  (/) ) )
5350, 52syl5bbr 252 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  C  /\  x  e.  D )  <->  x  e.  (/) ) )
5449, 53mtbiri 296 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( x  e.  C  /\  x  e.  D ) )
55 imnan 413 . . . . . . . . . . 11  |-  ( ( x  e.  C  ->  -.  x  e.  D
)  <->  -.  ( x  e.  C  /\  x  e.  D ) )
5654, 55sylibr 205 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  C  ->  -.  x  e.  D
) )
5756imp 420 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  -.  x  e.  D )
5857adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  -.  x  e.  D )
59 nelne2 2696 . . . . . . . 8  |-  ( ( y  e.  D  /\  -.  x  e.  D
)  ->  y  =/=  x )
6048, 58, 59syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  y  =/=  x )
6143, 44, 46, 47, 60, 15dprdcntz 15568 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  ( S `  y )  C_  ( Z `  ( S `  x )
) )
6242, 61eqsstrd 3384 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  D )  ->  (
( S  |`  D ) `
 y )  C_  ( Z `  ( S `
 x ) ) )
6323, 35, 40, 62dprdlub 15586 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( G DProd  ( S  |`  D ) )  C_  ( Z `  ( S `  x
) ) )
6415, 25, 29, 63cntzrecd 15312 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( S `  x )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
6519, 64eqsstrd 3384 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( S  |`  C ) `
 x )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
665, 10, 17, 65dprdlub 15586 1  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601    i^i cin 3321    C_ wss 3322   (/)c0 3630   class class class wbr 4214   dom cdm 4880    |` cres 4882   ` cfv 5456  (class class class)co 6083   Basecbs 13471   Grpcgrp 14687  SubGrpcsubg 14940  Cntzccntz 15116   DProd cdprd 15556
This theorem is referenced by:  dprd2da  15602  dmdprdsplit  15607  ablfac1eulem  15632  ablfac1eu  15633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-fzo 11138  df-seq 11326  df-hash 11621  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-0g 13729  df-gsum 13730  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-ghm 15006  df-gim 15048  df-cntz 15118  df-oppg 15144  df-cmn 15416  df-dprd 15558
  Copyright terms: Public domain W3C validator