MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Unicode version

Theorem dprdf1o 15267
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1  |-  ( ph  ->  G dom DProd  S )
dprdf1o.2  |-  ( ph  ->  dom  S  =  I )
dprdf1o.3  |-  ( ph  ->  F : J -1-1-onto-> I )
Assertion
Ref Expression
dprdf1o  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )

Proof of Theorem dprdf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2283 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2283 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 dprdf1o.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
5 dprdgrp 15240 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
64, 5syl 15 . . 3  |-  ( ph  ->  G  e.  Grp )
7 dprdf1o.3 . . . . 5  |-  ( ph  ->  F : J -1-1-onto-> I )
8 f1of1 5471 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J -1-1-> I )
97, 8syl 15 . . . 4  |-  ( ph  ->  F : J -1-1-> I
)
10 dprdf1o.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
11 reldmdprd 15235 . . . . . . 7  |-  Rel  dom DProd
1211brrelex2i 4730 . . . . . 6  |-  ( G dom DProd  S  ->  S  e. 
_V )
13 dmexg 4939 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
144, 12, 133syl 18 . . . . 5  |-  ( ph  ->  dom  S  e.  _V )
1510, 14eqeltrrd 2358 . . . 4  |-  ( ph  ->  I  e.  _V )
16 f1dmex 5751 . . . 4  |-  ( ( F : J -1-1-> I  /\  I  e.  _V )  ->  J  e.  _V )
179, 15, 16syl2anc 642 . . 3  |-  ( ph  ->  J  e.  _V )
184, 10dprdf2 15242 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
19 f1of 5472 . . . . 5  |-  ( F : J -1-1-onto-> I  ->  F : J
--> I )
207, 19syl 15 . . . 4  |-  ( ph  ->  F : J --> I )
21 fco 5398 . . . 4  |-  ( ( S : I --> (SubGrp `  G )  /\  F : J --> I )  -> 
( S  o.  F
) : J --> (SubGrp `  G ) )
2218, 20, 21syl2anc 642 . . 3  |-  ( ph  ->  ( S  o.  F
) : J --> (SubGrp `  G ) )
234adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  G dom DProd  S )
2410adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  dom  S  =  I )
2520adantr 451 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J --> I )
26 simpr1 961 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  e.  J )
27 ffvelrn 5663 . . . . . 6  |-  ( ( F : J --> I  /\  x  e.  J )  ->  ( F `  x
)  e.  I )
2825, 26, 27syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  e.  I )
29 simpr2 962 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
y  e.  J )
30 ffvelrn 5663 . . . . . 6  |-  ( ( F : J --> I  /\  y  e.  J )  ->  ( F `  y
)  e.  I )
3125, 29, 30syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  y
)  e.  I )
32 simpr3 963 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  x  =/=  y )
339adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  ->  F : J -1-1-> I )
34 f1fveq 5786 . . . . . . . 8  |-  ( ( F : J -1-1-> I  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
3533, 26, 29, 34syl12anc 1180 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
x  =  y ) )
3635necon3bid 2481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( F `  x )  =/=  ( F `  y )  <->  x  =/=  y ) )
3732, 36mpbird 223 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( F `  x
)  =/=  ( F `
 y ) )
3823, 24, 28, 31, 37, 1dprdcntz 15243 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( S `  ( F `  x )
)  C_  ( (Cntz `  G ) `  ( S `  ( F `  y ) ) ) )
39 fvco3 5596 . . . . 5  |-  ( ( F : J --> I  /\  x  e.  J )  ->  ( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
4025, 26, 39syl2anc 642 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  =  ( S `
 ( F `  x ) ) )
41 fvco3 5596 . . . . . 6  |-  ( ( F : J --> I  /\  y  e.  J )  ->  ( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
4225, 29, 41syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  y
)  =  ( S `
 ( F `  y ) ) )
4342fveq2d 5529 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( ( S  o.  F ) `  y ) )  =  ( (Cntz `  G
) `  ( S `  ( F `  y
) ) ) )
4438, 40, 433sstr4d 3221 . . 3  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J  /\  x  =/=  y ) )  -> 
( ( S  o.  F ) `  x
)  C_  ( (Cntz `  G ) `  (
( S  o.  F
) `  y )
) )
4520, 39sylan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) `  x )  =  ( S `  ( F `  x ) ) )
46 imaco 5178 . . . . . . . . 9  |-  ( ( S  o.  F )
" ( J  \  { x } ) )  =  ( S
" ( F "
( J  \  {
x } ) ) )
477adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  F : J -1-1-onto-> I )
48 dff1o3 5478 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  <->  ( F : J -onto-> I  /\  Fun  `' F ) )
4948simprbi 450 . . . . . . . . . . . 12  |-  ( F : J -1-1-onto-> I  ->  Fun  `' F )
50 imadif 5327 . . . . . . . . . . . 12  |-  ( Fun  `' F  ->  ( F
" ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
5147, 49, 503syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( ( F " J ) 
\  ( F " { x } ) ) )
52 f1ofo 5479 . . . . . . . . . . . . 13  |-  ( F : J -1-1-onto-> I  ->  F : J -onto-> I )
53 foima 5456 . . . . . . . . . . . . 13  |-  ( F : J -onto-> I  -> 
( F " J
)  =  I )
5447, 52, 533syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " J )  =  I )
55 f1ofn 5473 . . . . . . . . . . . . . . 15  |-  ( F : J -1-1-onto-> I  ->  F  Fn  J )
567, 55syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  J )
57 fnsnfv 5582 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  J  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F " { x } ) )
5856, 57sylan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  J )  ->  { ( F `  x ) }  =  ( F
" { x }
) )
5958eqcomd 2288 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  ( F " { x }
)  =  { ( F `  x ) } )
6054, 59difeq12d 3295 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  (
( F " J
)  \  ( F " { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
6151, 60eqtrd 2315 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  J )  ->  ( F " ( J  \  { x } ) )  =  ( I 
\  { ( F `
 x ) } ) )
6261imaeq2d 5012 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  J )  ->  ( S " ( F "
( J  \  {
x } ) ) )  =  ( S
" ( I  \  { ( F `  x ) } ) ) )
6346, 62syl5eq 2327 . . . . . . . 8  |-  ( (
ph  /\  x  e.  J )  ->  (
( S  o.  F
) " ( J 
\  { x }
) )  =  ( S " ( I 
\  { ( F `
 x ) } ) ) )
6463unieqd 3838 . . . . . . 7  |-  ( (
ph  /\  x  e.  J )  ->  U. (
( S  o.  F
) " ( J 
\  { x }
) )  =  U. ( S " ( I 
\  { ( F `
 x ) } ) ) )
6564fveq2d 5529 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  o.  F ) " ( J  \  { x }
) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { ( F `  x ) } ) ) ) )
6645, 65ineq12d 3371 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  ( ( S `  ( F `  x ) )  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) ) )
674adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  G dom DProd  S )
6810adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  dom  S  =  I )
6920, 27sylan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  J )  ->  ( F `  x )  e.  I )
7067, 68, 69, 2, 3dprddisj 15244 . . . . 5  |-  ( (
ph  /\  x  e.  J )  ->  (
( S `  ( F `  x )
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { ( F `  x ) } ) ) ) )  =  { ( 0g `  G ) } )
7166, 70eqtrd 2315 . . . 4  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
72 eqimss 3230 . . . 4  |-  ( ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  =  { ( 0g `  G ) }  ->  ( ( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
7371, 72syl 15 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  (
( ( S  o.  F ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  o.  F )
" ( J  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
741, 2, 3, 6, 17, 22, 44, 73dmdprdd 15237 . 2  |-  ( ph  ->  G dom DProd  ( S  o.  F ) )
75 rnco2 5180 . . . . . 6  |-  ran  ( S  o.  F )  =  ( S " ran  F )
76 forn 5454 . . . . . . . . 9  |-  ( F : J -onto-> I  ->  ran  F  =  I )
777, 52, 763syl 18 . . . . . . . 8  |-  ( ph  ->  ran  F  =  I )
7877imaeq2d 5012 . . . . . . 7  |-  ( ph  ->  ( S " ran  F )  =  ( S
" I ) )
79 ffn 5389 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
80 fnima 5362 . . . . . . . 8  |-  ( S  Fn  I  ->  ( S " I )  =  ran  S )
8118, 79, 803syl 18 . . . . . . 7  |-  ( ph  ->  ( S " I
)  =  ran  S
)
8278, 81eqtrd 2315 . . . . . 6  |-  ( ph  ->  ( S " ran  F )  =  ran  S
)
8375, 82syl5eq 2327 . . . . 5  |-  ( ph  ->  ran  ( S  o.  F )  =  ran  S )
8483unieqd 3838 . . . 4  |-  ( ph  ->  U. ran  ( S  o.  F )  = 
U. ran  S )
8584fveq2d 5529 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S ) )
863dprdspan 15262 . . . 4  |-  ( G dom DProd  ( S  o.  F )  ->  ( G DProd  ( S  o.  F
) )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  ( S  o.  F
) ) )
8774, 86syl 15 . . 3  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  ( S  o.  F )
) )
883dprdspan 15262 . . . 4  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
894, 88syl 15 . . 3  |-  ( ph  ->  ( G DProd  S )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
) )
9085, 87, 893eqtr4d 2325 . 2  |-  ( ph  ->  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S
) )
9174, 90jca 518 1  |-  ( ph  ->  ( G dom DProd  ( S  o.  F )  /\  ( G DProd  ( S  o.  F ) )  =  ( G DProd  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692    o. ccom 4693   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   0gc0g 13400  mrClscmrc 13485   Grpcgrp 14362  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprdf1  15268  ablfaclem2  15321
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-gim 14723  df-cntz 14793  df-oppg 14819  df-cmn 15091  df-dprd 15233
  Copyright terms: Public domain W3C validator