MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfcntz Structured version   Unicode version

Theorem dprdfcntz 15573
Description: A function on the elements of an internal direct product has pairwise-commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdff.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
dprdff.1  |-  ( ph  ->  G dom DProd  S )
dprdff.2  |-  ( ph  ->  dom  S  =  I )
dprdff.3  |-  ( ph  ->  F  e.  W )
dprdfcntz.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
dprdfcntz  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
Distinct variable groups:    h, F    h, i, I    .0. , h    S, h, i
Allowed substitution hints:    ph( h, i)    F( i)    G( h, i)    W( h, i)    .0. ( i)    Z( h, i)

Proof of Theorem dprdfcntz
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdff.w . . . . 5  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 dprdff.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
3 dprdff.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
4 dprdff.3 . . . . 5  |-  ( ph  ->  F  e.  W )
5 eqid 2436 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 15570 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
7 ffn 5591 . . . 4  |-  ( F : I --> ( Base `  G )  ->  F  Fn  I )
86, 7syl 16 . . 3  |-  ( ph  ->  F  Fn  I )
96ffvelrnda 5870 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  G
) )
10 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  y  =  z )
1110fveq2d 5732 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  ( F `  y )  =  ( F `  z ) )
1210eqcomd 2441 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  z  =  y )
1312fveq2d 5732 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  ( F `  z )  =  ( F `  y ) )
1411, 13oveq12d 6099 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =  z )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
152ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  G dom DProd  S )
163ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  dom  S  =  I )
17 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  y  e.  I )
18 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  z  e.  I )
19 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  y  =/=  z )
20 dprdfcntz.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
2115, 16, 17, 18, 19, 20dprdcntz 15566 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( S `  y )  C_  ( Z `  ( S `  z )
) )
221, 2, 3, 4dprdfcl 15571 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( S `  y
) )
2322ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  y )  e.  ( S `  y
) )
2421, 23sseldd 3349 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  y )  e.  ( Z `  ( S `  z )
) )
251, 2, 3, 4dprdfcl 15571 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  I )  ->  ( F `  z )  e.  ( S `  z
) )
2625adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  I )  /\  z  e.  I )  ->  ( F `  z )  e.  ( S `  z
) )
2726adantr 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  ( F `  z )  e.  ( S `  z
) )
28 eqid 2436 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
2928, 20cntzi 15128 . . . . . . . . 9  |-  ( ( ( F `  y
)  e.  ( Z `
 ( S `  z ) )  /\  ( F `  z )  e.  ( S `  z ) )  -> 
( ( F `  y ) ( +g  `  G ) ( F `
 z ) )  =  ( ( F `
 z ) ( +g  `  G ) ( F `  y
) ) )
3024, 27, 29syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  I )  /\  z  e.  I
)  /\  y  =/=  z )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3114, 30pm2.61dane 2682 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  I )  /\  z  e.  I )  ->  (
( F `  y
) ( +g  `  G
) ( F `  z ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3231ralrimiva 2789 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) )
338adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  Fn  I )
34 oveq2 6089 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
( F `  y
) ( +g  `  G
) x )  =  ( ( F `  y ) ( +g  `  G ) ( F `
 z ) ) )
35 oveq1 6088 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  G
) ( F `  y ) )  =  ( ( F `  z ) ( +g  `  G ) ( F `
 y ) ) )
3634, 35eqeq12d 2450 . . . . . . . 8  |-  ( x  =  ( F `  z )  ->  (
( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3736ralrn 5873 . . . . . . 7  |-  ( F  Fn  I  ->  ( A. x  e.  ran  F ( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3833, 37syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( A. x  e.  ran  F ( ( F `  y ) ( +g  `  G ) x )  =  ( x ( +g  `  G ) ( F `  y
) )  <->  A. z  e.  I  ( ( F `  y )
( +g  `  G ) ( F `  z
) )  =  ( ( F `  z
) ( +g  `  G
) ( F `  y ) ) ) )
3932, 38mpbird 224 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  A. x  e.  ran  F ( ( F `  y ) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) )
40 frn 5597 . . . . . . . 8  |-  ( F : I --> ( Base `  G )  ->  ran  F 
C_  ( Base `  G
) )
416, 40syl 16 . . . . . . 7  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
4241adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ran  F 
C_  ( Base `  G
) )
435, 28, 20elcntz 15121 . . . . . 6  |-  ( ran 
F  C_  ( Base `  G )  ->  (
( F `  y
)  e.  ( Z `
 ran  F )  <->  ( ( F `  y
)  e.  ( Base `  G )  /\  A. x  e.  ran  F ( ( F `  y
) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) ) ) )
4442, 43syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( F `  y
)  e.  ( Z `
 ran  F )  <->  ( ( F `  y
)  e.  ( Base `  G )  /\  A. x  e.  ran  F ( ( F `  y
) ( +g  `  G
) x )  =  ( x ( +g  `  G ) ( F `
 y ) ) ) ) )
459, 39, 44mpbir2and 889 . . . 4  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Z `  ran  F ) )
4645ralrimiva 2789 . . 3  |-  ( ph  ->  A. y  e.  I 
( F `  y
)  e.  ( Z `
 ran  F )
)
47 ffnfv 5894 . . 3  |-  ( F : I --> ( Z `
 ran  F )  <->  ( F  Fn  I  /\  A. y  e.  I  ( F `  y )  e.  ( Z `  ran  F ) ) )
488, 46, 47sylanbrc 646 . 2  |-  ( ph  ->  F : I --> ( Z `
 ran  F )
)
49 frn 5597 . 2  |-  ( F : I --> ( Z `
 ran  F )  ->  ran  F  C_  ( Z `  ran  F ) )
5048, 49syl 16 1  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709   _Vcvv 2956    \ cdif 3317    C_ wss 3320   {csn 3814   class class class wbr 4212   `'ccnv 4877   dom cdm 4878   ran crn 4879   "cima 4881    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   X_cixp 7063   Fincfn 7109   Basecbs 13469   +g cplusg 13529  Cntzccntz 15114   DProd cdprd 15554
This theorem is referenced by:  dprdssv  15574  dprdfinv  15577  dprdfadd  15578  dprdfeq0  15580  dprdlub  15584  dmdprdsplitlem  15595  dpjidcl  15616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-ixp 7064  df-subg 14941  df-cntz 15116  df-dprd 15556
  Copyright terms: Public domain W3C validator