MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Unicode version

Theorem dprdfeq0 15257
Description: The zero function is the only function that sums two zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
Assertion
Ref Expression
dprdfeq0  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Distinct variable groups:    x, h, F    h, i, G, x   
h, I, i, x    ph, x    .0. , h, x    S, h, i, x
Allowed substitution hints:    ph( h, i)    F( i)    W( x, h, i)    .0. ( i)

Proof of Theorem dprdfeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
2 eldprdi.1 . . . . . . 7  |-  ( ph  ->  G dom DProd  S )
3 eldprdi.2 . . . . . . 7  |-  ( ph  ->  dom  S  =  I )
4 eldprdi.3 . . . . . . 7  |-  ( ph  ->  F  e.  W )
5 eqid 2283 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 15247 . . . . . 6  |-  ( ph  ->  F : I --> ( Base `  G ) )
76feqmptd 5575 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
87adantr 451 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
91, 2, 3, 4dprdfcl 15248 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
109adantlr 695 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
11 eldprdi.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
122ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G dom DProd  S )
133ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  dom  S  =  I )
14 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  x  e.  I )
15 eqid 2283 . . . . . . . . . . . . . 14  |-  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)
1611, 1, 12, 13, 14, 10, 15dprdfid 15252 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  e.  W  /\  ( G 
gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) ) )
1716simpld 445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  e.  W
)
184ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  e.  W )
19 eqid 2283 . . . . . . . . . . . 12  |-  ( -g `  G )  =  (
-g `  G )
2011, 1, 12, 13, 17, 18, 19dprdfsub 15256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  o F ( -g `  G ) F )  e.  W  /\  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  o F ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) ) )
2120simprd 449 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  o F ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) )
22 reldmdprd 15235 . . . . . . . . . . . . . . . 16  |-  Rel  dom DProd
2322brrelex2i 4730 . . . . . . . . . . . . . . 15  |-  ( G dom DProd  S  ->  S  e. 
_V )
24 dmexg 4939 . . . . . . . . . . . . . . 15  |-  ( S  e.  _V  ->  dom  S  e.  _V )
252, 23, 243syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  S  e.  _V )
263, 25eqeltrrd 2358 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  _V )
2726ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  I  e.  _V )
28 fvex 5539 . . . . . . . . . . . . . 14  |-  ( F `
 x )  e. 
_V
29 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  e. 
_V
3011, 29eqeltri 2353 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
3128, 30ifex 3623 . . . . . . . . . . . . 13  |-  if ( y  =  x ,  ( F `  x
) ,  .0.  )  e.  _V
3231a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  if ( y  =  x ,  ( F `  x ) ,  .0.  )  e.  _V )
33 fvex 5539 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
3433a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  _V )
35 eqidd 2284 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) ) )
366ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F : I --> ( Base `  G ) )
3736feqmptd 5575 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  =  ( y  e.  I  |->  ( F `  y ) ) )
3827, 32, 34, 35, 37offval2 6095 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  o F ( -g `  G
) F )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )
3938oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  o F ( -g `  G ) F ) )  =  ( G 
gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) ) )
4016simprd 449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) )
41 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  F )  =  .0.  )
4240, 41oveq12d 5876 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( ( F `  x ) ( -g `  G
)  .0.  ) )
43 dprdgrp 15240 . . . . . . . . . . . . 13  |-  ( G dom DProd  S  ->  G  e. 
Grp )
4412, 43syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Grp )
45 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( F : I --> ( Base `  G )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
4636, 14, 45syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
475, 11, 19grpsubid1 14551 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4844, 46, 47syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4942, 48eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( F `
 x ) )
5021, 39, 493eqtr3d 2323 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  =  ( F `  x ) )
51 eqid 2283 . . . . . . . . . 10  |-  (Cntz `  G )  =  (Cntz `  G )
52 grpmnd 14494 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  G  e.  Mnd )
532, 43, 523syl 18 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
5453ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Mnd )
555subgacs 14652 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
56 acsmre 13554 . . . . . . . . . . . . 13  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
5744, 55, 563syl 18 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
58 imassrn 5025 . . . . . . . . . . . . . 14  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
592, 3dprdf2 15242 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
6059ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S : I --> (SubGrp `  G ) )
61 frn 5395 . . . . . . . . . . . . . . . 16  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
6260, 61syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
63 mresspw 13494 . . . . . . . . . . . . . . . 16  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6457, 63syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6562, 64sstrd 3189 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  ~P ( Base `  G
) )
6658, 65syl5ss 3190 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
67 sspwuni 3987 . . . . . . . . . . . . 13  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
6866, 67sylib 188 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
69 eqid 2283 . . . . . . . . . . . . 13  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
7069mrccl 13513 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
7157, 68, 70syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )
)
72 subgsubm 14639 . . . . . . . . . . 11  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubMnd `  G
) )
7371, 72syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubMnd `  G )
)
74 oveq1 5865 . . . . . . . . . . . . 13  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( F `  x ) ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
7574eleq1d 2349 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( ( F `
 x ) (
-g `  G )
( F `  y
) )  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
76 oveq1 5865 . . . . . . . . . . . . 13  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
7776eleq1d 2349 . . . . . . . . . . . 12  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( (  .0.  ( -g `  G ) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
78 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  y  =  x )
7978fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  ( F `  y )  =  ( F `  x ) )
8079oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  =  ( ( F `  x ) ( -g `  G ) ( F `
 x ) ) )
815, 11, 19grpsubid 14550 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
8244, 46, 81syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
8311subg0cl 14629 . . . . . . . . . . . . . . . 16  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
8471, 83syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8582, 84eqeltrd 2357 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8685ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8780, 86eqeltrd 2357 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8871ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
) )
8988, 83syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
9069mrcssid 13519 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  U. ( S " ( I  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
9157, 68, 90syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
9291ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  U. ( S "
( I  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
931, 12, 13, 18dprdfcl 15248 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  ( S `  y
) )
9493adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( S `
 y ) )
95 ffn 5389 . . . . . . . . . . . . . . . . . 18  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
9660, 95syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S  Fn  I )
9796ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  S  Fn  I )
98 difss 3303 . . . . . . . . . . . . . . . . 17  |-  ( I 
\  { x }
)  C_  I
9998a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( I  \  {
x } )  C_  I )
100 df-ne 2448 . . . . . . . . . . . . . . . . . 18  |-  ( y  =/=  x  <->  -.  y  =  x )
101 eldifsn 3749 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
102101biimpri 197 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  I  /\  y  =/=  x )  -> 
y  e.  ( I 
\  { x }
) )
103100, 102sylan2br 462 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  I  /\  -.  y  =  x
)  ->  y  e.  ( I  \  { x } ) )
104103adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  y  e.  ( I 
\  { x }
) )
105 fnfvima 5756 . . . . . . . . . . . . . . . 16  |-  ( ( S  Fn  I  /\  ( I  \  { x } )  C_  I  /\  y  e.  (
I  \  { x } ) )  -> 
( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
10697, 99, 104, 105syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
107 elunii 3832 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  y
)  e.  ( S `
 y )  /\  ( S `  y )  e.  ( S "
( I  \  {
x } ) ) )  ->  ( F `  y )  e.  U. ( S " ( I 
\  { x }
) ) )
10894, 106, 107syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  U. ( S " ( I  \  { x } ) ) )
10992, 108sseldd 3181 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
11019subgsubcl 14632 . . . . . . . . . . . . 13  |-  ( ( ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  .0.  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  /\  ( F `  y )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
11188, 89, 109, 110syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  (  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
11275, 77, 87, 111ifbothda 3595 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
113 eqid 2283 . . . . . . . . . . 11  |-  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) ) )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
114112, 113fmptd 5684 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) ) : I --> ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
11520simpld 445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  o F ( -g `  G
) F )  e.  W )
11638, 115eqeltrrd 2358 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) )  e.  W )
1171, 12, 13, 116, 51dprdfcntz 15250 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) )  C_  ( (Cntz `  G ) `  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) ) ) )
1181, 12, 13, 116dprdffi 15249 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( `' ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
11911, 51, 54, 27, 73, 114, 117, 118gsumzsubmcl 15200 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
12050, 119eqeltrrd 2358 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
121 elin 3358 . . . . . . . 8  |-  ( ( F `  x )  e.  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )  <->  ( ( F `
 x )  e.  ( S `  x
)  /\  ( F `  x )  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) )
12210, 120, 121sylanbrc 645 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) )
12312, 13, 14, 11, 69dprddisj 15244 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  } )
124122, 123eleqtrd 2359 . . . . . 6  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  {  .0.  } )
125 elsni 3664 . . . . . 6  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( F `  x
)  =  .0.  )
126124, 125syl 15 . . . . 5  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  =  .0.  )
127126mpteq2dva 4106 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  ( x  e.  I  |->  ( F `  x
) )  =  ( x  e.  I  |->  .0.  ) )
1288, 127eqtrd 2315 . . 3  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  .0.  )
)
129128ex 423 . 2  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  ->  F  =  ( x  e.  I  |->  .0.  ) )
)
13011gsumz 14458 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  _V )  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
13153, 26, 130syl2anc 642 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
132 oveq2 5866 . . . 4  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( x  e.  I  |->  .0.  ) ) )
133132eqeq1d 2291 . . 3  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( ( G  gsumg  F )  =  .0.  <->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  ) )
134131, 133syl5ibrcom 213 . 2  |-  ( ph  ->  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  .0.  )
)
135129, 134impbid 183 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   ifcif 3565   ~Pcpw 3625   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   X_cixp 6817   Fincfn 6863   Basecbs 13148   0gc0g 13400    gsumg cgsu 13401  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487   Mndcmnd 14361   Grpcgrp 14362   -gcsg 14365  SubMndcsubmnd 14414  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprdf11  15258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-gim 14723  df-cntz 14793  df-oppg 14819  df-cmn 15091  df-dprd 15233
  Copyright terms: Public domain W3C validator