MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfid Structured version   Unicode version

Theorem dprdfid 15567
Description: The zero function is the only function that sums two zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
dprdfid.3  |-  ( ph  ->  X  e.  I )
dprdfid.4  |-  ( ph  ->  A  e.  ( S `
 X ) )
dprdfid.f  |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
Assertion
Ref Expression
dprdfid  |-  ( ph  ->  ( F  e.  W  /\  ( G  gsumg  F )  =  A ) )
Distinct variable groups:    h, n, A    h, F    h, i, G, n    h, I, i, n    ph, n    .0. , h, n    S, h, i, n   
h, X, n
Allowed substitution hints:    ph( h, i)    A( i)    F( i, n)    W( h, i, n)    X( i)    .0. ( i)

Proof of Theorem dprdfid
StepHypRef Expression
1 dprdfid.f . . 3  |-  F  =  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
2 eldprdi.w . . . 4  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
3 eldprdi.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
4 eldprdi.2 . . . 4  |-  ( ph  ->  dom  S  =  I )
5 dprdfid.4 . . . . . . 7  |-  ( ph  ->  A  e.  ( S `
 X ) )
65ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  A  e.  ( S `  X
) )
7 simpr 448 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  n  =  X )
87fveq2d 5724 . . . . . 6  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  ( S `  n )  =  ( S `  X ) )
96, 8eleqtrrd 2512 . . . . 5  |-  ( ( ( ph  /\  n  e.  I )  /\  n  =  X )  ->  A  e.  ( S `  n
) )
103, 4dprdf2 15557 . . . . . . . 8  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
1110ffvelrnda 5862 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( S `  n )  e.  (SubGrp `  G )
)
12 eldprdi.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
1312subg0cl 14944 . . . . . . 7  |-  ( ( S `  n )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  n ) )
1411, 13syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  I )  ->  .0.  e.  ( S `  n
) )
1514adantr 452 . . . . 5  |-  ( ( ( ph  /\  n  e.  I )  /\  -.  n  =  X )  ->  .0.  e.  ( S `
 n ) )
169, 15ifclda 3758 . . . 4  |-  ( (
ph  /\  n  e.  I )  ->  if ( n  =  X ,  A ,  .0.  )  e.  ( S `  n
) )
17 snfi 7179 . . . . 5  |-  { X }  e.  Fin
18 eldifsni 3920 . . . . . . . 8  |-  ( n  e.  ( I  \  { X } )  ->  n  =/=  X )
1918adantl 453 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( I  \  { X } ) )  ->  n  =/=  X )
20 ifnefalse 3739 . . . . . . 7  |-  ( n  =/=  X  ->  if ( n  =  X ,  A ,  .0.  )  =  .0.  )
2119, 20syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  ( I  \  { X } ) )  ->  if ( n  =  X ,  A ,  .0.  )  =  .0.  )
2221suppss2 6292 . . . . 5  |-  ( ph  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  { X } )
23 ssfi 7321 . . . . 5  |-  ( ( { X }  e.  Fin  /\  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) " ( _V  \  {  .0.  }
) )  C_  { X } )  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
2417, 22, 23sylancr 645 . . . 4  |-  ( ph  ->  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
252, 3, 4, 16, 24dprdwd 15561 . . 3  |-  ( ph  ->  ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )  e.  W
)
261, 25syl5eqel 2519 . 2  |-  ( ph  ->  F  e.  W )
27 eqid 2435 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
28 dprdgrp 15555 . . . . 5  |-  ( G dom DProd  S  ->  G  e. 
Grp )
29 grpmnd 14809 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Mnd )
303, 28, 293syl 19 . . . 4  |-  ( ph  ->  G  e.  Mnd )
31 reldmdprd 15550 . . . . . . 7  |-  Rel  dom DProd
3231brrelex2i 4911 . . . . . 6  |-  ( G dom DProd  S  ->  S  e. 
_V )
33 dmexg 5122 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
343, 32, 333syl 19 . . . . 5  |-  ( ph  ->  dom  S  e.  _V )
354, 34eqeltrrd 2510 . . . 4  |-  ( ph  ->  I  e.  _V )
36 dprdfid.3 . . . 4  |-  ( ph  ->  X  e.  I )
372, 3, 4, 26, 27dprdff 15562 . . . 4  |-  ( ph  ->  F : I --> ( Base `  G ) )
381cnveqi 5039 . . . . . 6  |-  `' F  =  `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) )
3938imaeq1i 5192 . . . . 5  |-  ( `' F " ( _V 
\  {  .0.  }
) )  =  ( `' ( n  e.  I  |->  if ( n  =  X ,  A ,  .0.  ) ) "
( _V  \  {  .0.  } ) )
4039, 22syl5eqss 3384 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
4127, 12, 30, 35, 36, 37, 40gsumpt 15537 . . 3  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
42 iftrue 3737 . . . . 5  |-  ( n  =  X  ->  if ( n  =  X ,  A ,  .0.  )  =  A )
4342, 1fvmptg 5796 . . . 4  |-  ( ( X  e.  I  /\  A  e.  ( S `  X ) )  -> 
( F `  X
)  =  A )
4436, 5, 43syl2anc 643 . . 3  |-  ( ph  ->  ( F `  X
)  =  A )
4541, 44eqtrd 2467 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  A )
4626, 45jca 519 1  |-  ( ph  ->  ( F  e.  W  /\  ( G  gsumg  F )  =  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   ifcif 3731   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   dom cdm 4870   "cima 4873   ` cfv 5446  (class class class)co 6073   X_cixp 7055   Fincfn 7101   Basecbs 13461   0gc0g 13715    gsumg cgsu 13716   Mndcmnd 14676   Grpcgrp 14677  SubGrpcsubg 14930   DProd cdprd 15546
This theorem is referenced by:  dprdfeq0  15572  dprdub  15575  dpjrid  15612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-gsum 13720  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-grp 14804  df-mulg 14807  df-subg 14933  df-cntz 15108  df-cmn 15406  df-dprd 15548
  Copyright terms: Public domain W3C validator