MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Unicode version

Theorem dprdgrp 15240
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp  |-  ( G dom DProd  S  ->  G  e. 
Grp )

Proof of Theorem dprdgrp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 15235 . . . . . 6  |-  Rel  dom DProd
21brrelex2i 4730 . . . . 5  |-  ( G dom DProd  S  ->  S  e. 
_V )
3 dmexg 4939 . . . . 5  |-  ( S  e.  _V  ->  dom  S  e.  _V )
42, 3syl 15 . . . 4  |-  ( G dom DProd  S  ->  dom  S  e.  _V )
5 eqid 2283 . . . 4  |-  dom  S  =  dom  S
6 eqid 2283 . . . . 5  |-  (Cntz `  G )  =  (Cntz `  G )
7 eqid 2283 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
8 eqid 2283 . . . . 5  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
96, 7, 8dmdprd 15236 . . . 4  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
104, 5, 9sylancl 643 . . 3  |-  ( G dom DProd  S  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
1110ibi 232 . 2  |-  ( G dom DProd  S  ->  ( G  e.  Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) )
1211simp1d 967 1  |-  ( G dom DProd  S  ->  G  e. 
Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023   dom cdm 4689   "cima 4692   -->wf 5251   ` cfv 5255   0gc0g 13400  mrClscmrc 13485   Grpcgrp 14362  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprdssv  15251  dprdfid  15252  dprdfinv  15254  dprdfadd  15255  dprdfsub  15256  dprdfeq0  15257  dprdf11  15258  dprdsubg  15259  dprdlub  15261  dprdspan  15262  dprdres  15263  dprdss  15264  dprdf1o  15267  dmdprdsplitlem  15272  dprdcntz2  15273  dprddisj2  15274  dprd2dlem1  15276  dprd2da  15277  dmdprdsplit2lem  15280  dmdprdsplit2  15281  dpjfval  15290  dpjidcl  15293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-ixp 6818  df-dprd 15233
  Copyright terms: Public domain W3C validator