MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdres Unicode version

Theorem dprdres 15263
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdres.1  |-  ( ph  ->  G dom DProd  S )
dprdres.2  |-  ( ph  ->  dom  S  =  I )
dprdres.3  |-  ( ph  ->  A  C_  I )
Assertion
Ref Expression
dprdres  |-  ( ph  ->  ( G dom DProd  ( S  |`  A )  /\  ( G DProd  ( S  |`  A ) )  C_  ( G DProd  S ) ) )

Proof of Theorem dprdres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdres.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
2 dprdgrp 15240 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
31, 2syl 15 . . 3  |-  ( ph  ->  G  e.  Grp )
4 dprdres.2 . . . . 5  |-  ( ph  ->  dom  S  =  I )
51, 4dprdf2 15242 . . . 4  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
6 dprdres.3 . . . 4  |-  ( ph  ->  A  C_  I )
7 fssres 5408 . . . 4  |-  ( ( S : I --> (SubGrp `  G )  /\  A  C_  I )  ->  ( S  |`  A ) : A --> (SubGrp `  G )
)
85, 6, 7syl2anc 642 . . 3  |-  ( ph  ->  ( S  |`  A ) : A --> (SubGrp `  G ) )
91ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  G dom DProd  S )
104ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  dom  S  =  I )
116ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  A  C_  I
)
12 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  x  e.  A
)
1311, 12sseldd 3181 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  x  e.  I
)
14 eldifi 3298 . . . . . . . . . 10  |-  ( y  e.  ( A  \  { x } )  ->  y  e.  A
)
1514adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  y  e.  A
)
1611, 15sseldd 3181 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  y  e.  I
)
17 eldifsni 3750 . . . . . . . . . 10  |-  ( y  e.  ( A  \  { x } )  ->  y  =/=  x
)
1817adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  y  =/=  x
)
1918necomd 2529 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  x  =/=  y
)
20 eqid 2283 . . . . . . . 8  |-  (Cntz `  G )  =  (Cntz `  G )
219, 10, 13, 16, 19, 20dprdcntz 15243 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) ) )
22 fvres 5542 . . . . . . . 8  |-  ( x  e.  A  ->  (
( S  |`  A ) `
 x )  =  ( S `  x
) )
2312, 22syl 15 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  ( ( S  |`  A ) `  x
)  =  ( S `
 x ) )
24 fvres 5542 . . . . . . . . 9  |-  ( y  e.  A  ->  (
( S  |`  A ) `
 y )  =  ( S `  y
) )
2515, 24syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  ( ( S  |`  A ) `  y
)  =  ( S `
 y ) )
2625fveq2d 5529 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  ( (Cntz `  G ) `  (
( S  |`  A ) `
 y ) )  =  ( (Cntz `  G ) `  ( S `  y )
) )
2721, 23, 263sstr4d 3221 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  ( A  \  {
x } ) )  ->  ( ( S  |`  A ) `  x
)  C_  ( (Cntz `  G ) `  (
( S  |`  A ) `
 y ) ) )
2827ralrimiva 2626 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  ( A  \  {
x } ) ( ( S  |`  A ) `
 x )  C_  ( (Cntz `  G ) `  ( ( S  |`  A ) `  y
) ) )
2922adantl 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( S  |`  A ) `
 x )  =  ( S `  x
) )
3029ineq1d 3369 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( S  |`  A ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) ) )
31 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  G )  =  (
Base `  G )
3231subgacs 14652 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
33 acsmre 13554 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
343, 32, 333syl 18 . . . . . . . . . . 11  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
3534adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
36 resss 4979 . . . . . . . . . . . . 13  |-  ( S  |`  A )  C_  S
37 imass1 5048 . . . . . . . . . . . . 13  |-  ( ( S  |`  A )  C_  S  ->  ( ( S  |`  A ) "
( A  \  {
x } ) ) 
C_  ( S "
( A  \  {
x } ) ) )
3836, 37ax-mp 8 . . . . . . . . . . . 12  |-  ( ( S  |`  A ) " ( A  \  { x } ) )  C_  ( S " ( A  \  {
x } ) )
396adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  A  C_  I )
40 ssdif 3311 . . . . . . . . . . . . 13  |-  ( A 
C_  I  ->  ( A  \  { x }
)  C_  ( I  \  { x } ) )
41 imass2 5049 . . . . . . . . . . . . 13  |-  ( ( A  \  { x } )  C_  (
I  \  { x } )  ->  ( S " ( A  \  { x } ) )  C_  ( S " ( I  \  {
x } ) ) )
4239, 40, 413syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( A  \  { x } ) )  C_  ( S " ( I  \  {
x } ) ) )
4338, 42syl5ss 3190 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( S  |`  A )
" ( A  \  { x } ) )  C_  ( S " ( I  \  {
x } ) ) )
44 uniss 3848 . . . . . . . . . . 11  |-  ( ( ( S  |`  A )
" ( A  \  { x } ) )  C_  ( S " ( I  \  {
x } ) )  ->  U. ( ( S  |`  A ) " ( A  \  { x }
) )  C_  U. ( S " ( I  \  { x } ) ) )
4543, 44syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  U. (
( S  |`  A )
" ( A  \  { x } ) )  C_  U. ( S " ( I  \  { x } ) ) )
46 imassrn 5025 . . . . . . . . . . . 12  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
47 frn 5395 . . . . . . . . . . . . . . 15  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
485, 47syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
4931subgss 14622 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  ( Base `  G ) )
50 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
5150elpw 3631 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ~P ( Base `  G )  <->  x  C_  ( Base `  G ) )
5249, 51sylibr 203 . . . . . . . . . . . . . . . 16  |-  ( x  e.  (SubGrp `  G
)  ->  x  e.  ~P ( Base `  G
) )
5352ssriv 3184 . . . . . . . . . . . . . . 15  |-  (SubGrp `  G )  C_  ~P ( Base `  G )
5453a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  (SubGrp `  G )  C_ 
~P ( Base `  G
) )
5548, 54sstrd 3189 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  ~P ( Base `  G )
)
5655adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ran  S 
C_  ~P ( Base `  G
) )
5746, 56syl5ss 3190 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
58 sspwuni 3987 . . . . . . . . . . 11  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
5957, 58sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
60 eqid 2283 . . . . . . . . . . 11  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6160mrcss 13518 . . . . . . . . . 10  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( ( S  |`  A ) " ( A  \  { x }
) )  C_  U. ( S " ( I  \  { x } ) )  /\  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) )
6235, 45, 59, 61syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) )
63 sslin 3395 . . . . . . . . 9  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  -> 
( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) ) 
C_  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
6462, 63syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  C_  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) )
651adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  G dom DProd  S )
664adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  dom  S  =  I )
676sselda 3180 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  I )
68 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
6965, 66, 67, 68, 60dprddisj 15244 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
7064, 69sseqtrd 3214 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
71 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( S : I --> (SubGrp `  G )  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
725, 71sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
7367, 72syldan 456 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  e.  (SubGrp `  G )
)
7468subg0cl 14629 . . . . . . . . . 10  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  ( S `  x ) )
7573, 74syl 15 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( S `  x
) )
7645, 59sstrd 3189 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  U. (
( S  |`  A )
" ( A  \  { x } ) )  C_  ( Base `  G ) )
7760mrccl 13513 . . . . . . . . . . 11  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( ( S  |`  A ) " ( A  \  { x }
) )  C_  ( Base `  G ) )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( ( S  |`  A ) " ( A  \  { x } ) ) )  e.  (SubGrp `  G ) )
7835, 76, 77syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) )  e.  (SubGrp `  G )
)
7968subg0cl 14629 . . . . . . . . . 10  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) )  e.  (SubGrp `  G )  ->  ( 0g `  G
)  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )
8078, 79syl 15 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) )
81 elin 3358 . . . . . . . . 9  |-  ( ( 0g `  G )  e.  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) )  <-> 
( ( 0g `  G )  e.  ( S `  x )  /\  ( 0g `  G )  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) ) )
8275, 80, 81sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) ) )
8382snssd 3760 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  { ( 0g `  G ) }  C_  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) ) )
8470, 83eqssd 3196 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
8530, 84eqtrd 2315 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( S  |`  A ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
8628, 85jca 518 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( A. y  e.  ( A  \  { x }
) ( ( S  |`  A ) `  x
)  C_  ( (Cntz `  G ) `  (
( S  |`  A ) `
 y ) )  /\  ( ( ( S  |`  A ) `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( ( S  |`  A ) " ( A  \  { x }
) ) ) )  =  { ( 0g
`  G ) } ) )
8786ralrimiva 2626 . . 3  |-  ( ph  ->  A. x  e.  A  ( A. y  e.  ( A  \  { x } ) ( ( S  |`  A ) `  x )  C_  (
(Cntz `  G ) `  ( ( S  |`  A ) `  y
) )  /\  (
( ( S  |`  A ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )
88 reldmdprd 15235 . . . . . . . 8  |-  Rel  dom DProd
8988brrelex2i 4730 . . . . . . 7  |-  ( G dom DProd  S  ->  S  e. 
_V )
90 dmexg 4939 . . . . . . 7  |-  ( S  e.  _V  ->  dom  S  e.  _V )
911, 89, 903syl 18 . . . . . 6  |-  ( ph  ->  dom  S  e.  _V )
924, 91eqeltrrd 2358 . . . . 5  |-  ( ph  ->  I  e.  _V )
93 ssexg 4160 . . . . 5  |-  ( ( A  C_  I  /\  I  e.  _V )  ->  A  e.  _V )
946, 92, 93syl2anc 642 . . . 4  |-  ( ph  ->  A  e.  _V )
95 fdm 5393 . . . . 5  |-  ( ( S  |`  A ) : A --> (SubGrp `  G )  ->  dom  ( S  |`  A )  =  A )
968, 95syl 15 . . . 4  |-  ( ph  ->  dom  ( S  |`  A )  =  A )
9720, 68, 60dmdprd 15236 . . . 4  |-  ( ( A  e.  _V  /\  dom  ( S  |`  A )  =  A )  -> 
( G dom DProd  ( S  |`  A )  <->  ( G  e.  Grp  /\  ( S  |`  A ) : A --> (SubGrp `  G )  /\  A. x  e.  A  ( A. y  e.  ( A  \  { x } ) ( ( S  |`  A ) `  x )  C_  (
(Cntz `  G ) `  ( ( S  |`  A ) `  y
) )  /\  (
( ( S  |`  A ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
9894, 96, 97syl2anc 642 . . 3  |-  ( ph  ->  ( G dom DProd  ( S  |`  A )  <->  ( G  e.  Grp  /\  ( S  |`  A ) : A --> (SubGrp `  G )  /\  A. x  e.  A  ( A. y  e.  ( A  \  { x } ) ( ( S  |`  A ) `  x )  C_  (
(Cntz `  G ) `  ( ( S  |`  A ) `  y
) )  /\  (
( ( S  |`  A ) `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( ( S  |`  A ) " ( A  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
993, 8, 87, 98mpbir3and 1135 . 2  |-  ( ph  ->  G dom DProd  ( S  |`  A ) )
100 rnss 4907 . . . . . 6  |-  ( ( S  |`  A )  C_  S  ->  ran  ( S  |`  A )  C_  ran  S )
101 uniss 3848 . . . . . 6  |-  ( ran  ( S  |`  A ) 
C_  ran  S  ->  U.
ran  ( S  |`  A )  C_  U. ran  S )
10236, 100, 101mp2b 9 . . . . 5  |-  U. ran  ( S  |`  A ) 
C_  U. ran  S
103102a1i 10 . . . 4  |-  ( ph  ->  U. ran  ( S  |`  A )  C_  U. ran  S )
104 sspwuni 3987 . . . . 5  |-  ( ran 
S  C_  ~P ( Base `  G )  <->  U. ran  S  C_  ( Base `  G
) )
10555, 104sylib 188 . . . 4  |-  ( ph  ->  U. ran  S  C_  ( Base `  G )
)
10660mrcss 13518 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  ( S  |`  A )  C_  U. ran  S  /\  U. ran  S  C_  ( Base `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  ( S  |`  A ) )  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ran  S
) )
10734, 103, 105, 106syl3anc 1182 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  ( S  |`  A ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
10860dprdspan 15262 . . . 4  |-  ( G dom DProd  ( S  |`  A )  ->  ( G DProd  ( S  |`  A ) )  =  ( (mrCls `  (SubGrp `  G )
) `  U. ran  ( S  |`  A ) ) )
10999, 108syl 15 . . 3  |-  ( ph  ->  ( G DProd  ( S  |`  A ) )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  ( S  |`  A ) ) )
11060dprdspan 15262 . . . 4  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
1111, 110syl 15 . . 3  |-  ( ph  ->  ( G DProd  S )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
) )
112107, 109, 1113sstr4d 3221 . 2  |-  ( ph  ->  ( G DProd  ( S  |`  A ) )  C_  ( G DProd  S ) )
11399, 112jca 518 1  |-  ( ph  ->  ( G dom DProd  ( S  |`  A )  /\  ( G DProd  ( S  |`  A ) )  C_  ( G DProd  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   U.cuni 3827   class class class wbr 4023   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   0gc0g 13400  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487   Grpcgrp 14362  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprdf1  15268  dprdcntz2  15273  dprddisj2  15274  dprd2dlem1  15276  dprd2da  15277  dmdprdsplit  15282  dprdsplit  15283  dpjf  15292  dpjidcl  15293  dpjlid  15296  dpjghm  15298  ablfac1eulem  15307  ablfac1eu  15308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-gim 14723  df-cntz 14793  df-oppg 14819  df-cmn 15091  df-dprd 15233
  Copyright terms: Public domain W3C validator